यदि वृत्त ${x^2} + {y^2} = {a^2}$ तथा ${x^2} + {y^2} - 2gx + {g^2} - {b^2} = 0$ एक-दूसरे को बाह्यत: स्पर्श करते हों, तो

  • A

    $g = ab$

  • B

    ${g^2} = {a^2} + {b^2}$

  • C

    ${g^2} = ab$

  • D

    $g = a + b$

Similar Questions

$a , b , c ( a < b < c )$ त्रिज्याओं वाले तीन वृत्त परस्पर बाह्य स्पर्श करते हैं। यदि $x$ -अक्ष उनकी एक उभयनिष्ठ स्पर्श रेखा है, तो :

  • [JEE MAIN 2019]

वृत्त ${x^2} + {y^2} - 2x = 0$ द्वारा रेखा $y = x$ पर काटा गया अन्त:खण्ड $AB$ है। ऐसा वृत्त जिसका व्यास $AB$ है, का समीकरण है

  • [IIT 1996]

मान लें कि त्रिज्या $2$ के दो वृत्त एक समतल पर इस प्रकार है कि उनके केन्द्रों के बीच की दूरी $2 \sqrt{3}$ है। तब दोनों वृत्तों के उभयनिष्ट क्षेत्र का क्षेत्रफल निम्नांकित संख्याओं के बीच में है।

  • [KVPY 2017]

यदि वृत्त ${x^2} + {y^2} - 2ax + c = 0$ तथा ${x^2} + {y^2} + 2by + 2\lambda  = 0$ एक दूसरे को समकोण पर काटते हैं, तो $\lambda $ का मान

वृत्तों ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0$ तथा ${x^2} + {y^2} - 12y + 8 = 0$ का मूलाक्ष केन्द्र हैं