यदि $(x + iy)(1 - 2i)$ का संयुग्मी $1 + i$ हो, तो
$x = \frac{1}{5}$
$y = \frac{3}{5}$
$x + iy = \frac{{1 - i}}{{1 - 2i}}$
$x - iy = \frac{{1 - i}}{{1 + 2i}}$
माना $z _{1}$ तथा $z _{2}$ कोई दो शून्येतर सम्मिश्र संख्याएँ इस प्रकार हैं कि $3\left| z _{1}\right|=4\left| z _{2}\right|$ है। यदि $z =\frac{3 z _{1}}{2 z _{2}}+\frac{2 z _{2}}{3 z _{1}}$ हो, तो
माना दो सम्मिश्र संख्याओं $\mathrm{z}_1$ तथा $\mathrm{z}_2$ के लिए $z_1+z_2=5$ तथा $z_1^3+z_2^3=20+15 i$ है तो $\left|z_1^4+z_2^4\right|$ बराबर है -
$\left( {\frac{{1 - i}}{{1 + i}}} \right)$का कोणांक होगा
यदि $|{z_1} + {z_2}| = |{z_1} - {z_2}|$, तब ${z_1}$तथा ${z_2}$ के कोणांकों में अन्तर है
किसी भी सम्मिश्र संख्या $z$ के लिए $\bar z = \left( {\frac{1}{z}} \right)$यदि और केवल यदि