यदि बिन्दुओं $A, \,B,\, C$ के निर्देशांक क्रमश: $(-1, 5),\, (0, 0)$ तथा $(2, 2)$ हों और $D$, बिन्दु $BC$ का मध्य बिन्दु हो, तो बिन्दु $B$ से रेखा $AD$ पर डाले गये लम्ब का समीकरण है
$x + 2y = 0$
$2x + y = 0$
$x - 2y = 0$
$2x - y = 0$
दर्शाइए कि एक गतिमान बिंदु, जिसकी दो रेखाओं $3 x-2 y=5$ और $3 x+2 y=5$ से दूरीयाँ समान है, का पथ एक रेखा है।
दूरी सूत्र का प्रयोग किए बिना दिखलाइए कि बिंदु $(-2,-1),(4,0),(3,3)$ और $(-3,2)$ एक समांतर चतुर्भुज के शीर्ष हैं।
त्रिभुज, जिसके शीर्ष $P(2,\;2),\;Q(6,\; - \;1)$ व $R(7,\;3)$ हैं, की माध्यिका $PS$ है। बिन्दु $(1, -1)$ से जाने वाली तथा माध्यिका $PS$ के समान्तर रेखा का समीकरण है
एक बिन्दु इस प्रकार गति करता है कि इसकी बिन्दु $(3, -2)$ से दूरी का वर्ग संख्यात्मक रूप से इसकी रेखा $5x - 12y = 13$ से दूरी के बराबर रहता है। बिन्दु के बिन्दुपथ का समीकरण है
माना शीर्षो $(3,-1),(1,3)$ तथा $(2,4)$ वाले त्रिभुज का केंन्द्रक $C$ है। माना रेखाओं $x +3 y -1=0$ तथा $3 x - y +1=0$ का प्रतिच्छेदन बिन्दु $P$ है, तो बिन्दुओं $C$ तथा $P$ से गुजरने वाली रेखा, निम्न में से किस बिन्दु से भी गुजरती है