જો માહિતી $x_1, x_2, ...., x_{10}$ એવી હોય કે જેથી પ્રથમ ચાર અવલોકનોનો મધ્યક $11$ અને બાકીના છ અવલોકનોનો મધ્યક $16$ તથા બધા અવલોકનોના વર્ગોનો સરવાળો $2,000$ થાય તો આ માહિતીનું પ્રમાણિત વિચલન મેળવો
$2\sqrt 2 $
$2$
$4$
$\sqrt 2 $
આપેલ આવૃતિ વિતરણ :
ચલ $( x )$ | $x _{1}$ | $x _{1}$ | $x _{3} \ldots \ldots x _{15}$ |
આવૃતિ $(f)$ | $f _{1}$ | $f _{1}$ | $f _{3} \ldots f _{15}$ |
જ્યાં $0< x _{1}< x _{2}< x _{3}<\ldots .< x _{15}=10$ અને $\sum \limits_{i=1}^{15} f_{i}>0,$ હોય તો પ્રમાણિત વિચલન ............ ના હોય શકે
નીચે આપેલ માહિતી પરથી બતાવો કે $A$ અને $B$ માંથી કયા સમૂહમાં વધારે ચલન છે?
ગુણ |
$10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
સમૂહ $A$ | $9$ | $17$ | $32$ | $33$ | $40$ | $10$ | $9$ |
સમૂહ $B$ | $10$ | $20$ | $30$ | $25$ | $43$ | $15$ | $7$ |
ધારોકે $8$ સંખ્યાઓ $x, y, 10,12,6,12,4,8$ ના મધ્યક અને વિયરણ અનુક્રમે $9$ અને $9.25$ છે. જો $x > y$ હોય, તો $3 x-2 y=.........$.
$6$ અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન અનુક્રમે $8$ અને $4$ છે. જો પ્રત્યેક અવલોકનને $3$ વડે ગુણવામાં આવે, તો પરિણામી અવલોકનોના મધ્યક અને પ્રમાણિત વિચલન શોધો.
ધારો કે પ્રયોગ $A $ ના $100$ અવલોકન $ 101,102, . . .,200 $ અને પ્રયોગ $B $ ના $100$ અવલોકન $151,152, . . .,250$ છે જો $V_A$ અને $V_B$ એ આપેલ પ્રયોગ ના વિચરણ છે તો $V_A / V_B$ મેળવો.