यदि सरल रेखा $ax + by = 2;a,b \ne 0$ वृत्त ${x^2} + {y^2} - 2x = 3$ को स्पर्श करती है तथा वृत्त ${x^2} + {y^2} - 4y = 6$ पर अभिलम्ब है, तब $a$ तथा $b$ के मान क्रमश: हैं
$1, -1$
$1, 2$
$ - \frac{4}{3},1$
$2, 1$
माना वत्त $x ^{2}+ y ^{2}-2 x +4 y +1=0$ का केन्द्र $B$ है। माना वत्त के दो बिंदुओ $P$ तथा $Q$ पर स्पर्श रेखाओं का प्रतिच्छेदन बिंदु $A (3,1)$ है। तो $8.$ $\left(\frac{\text { area } \triangle \mathrm{APQ}}{\text { area } \triangle \mathrm{BPQ}}\right)$ बराबर है ........ |
बिन्दु $(1, 1)$ पर वृत्त $2{x^2} + 2{y^2} - 2x - 5y + 3 = 0$ के अभिलम्ब का समीकरण है
यदि रेखा $lx + my = 1$, वृत्त ${x^2} + {y^2} = {a^2}$ की एक स्पर्श रेखा हो तो बिन्दु $(l, m)$ का बिन्दुपथ है
वृत्त, जिसका केन्द्र $(2, -1)$ है, पर मूल बिन्दु से खींची गयी एक स्पर्श रेखा का समीकरण $3x + y = 0$ हो, तो दूसरी स्पर्श रेखा का समीकरण है
वृत्त ${x^2} + {y^2} = 9$ के बिन्दु $\left( {\frac{1}{{\sqrt 2 }},\frac{1}{{\sqrt 2 }}} \right)$ पर अभिलम्ब का समीकरण है