- Home
- Standard 11
- Mathematics
8. Sequences and Series
easy
यदि किसी समान्तर श्रेणी के $n$ पदों का योग $2{n^2} + 5n$ हो, तो $n$ वाँ पद होगा
A
$4n + 3$
B
$4n + 5$
C
$4n + 6$
D
$4n + 7$
Solution
(a) दिया है, ${S_n} = 2{n^2} + 5n$
$n = 1,\;2,\;3,\;……….,\;$रखने पर, ${S_1} = 2 \times 1 + 5 \times 1 = 7\;$
${S_2} = 2 \times 4 + 10 = 8 + 10 = 18,\;{S_3} = 18 + 15 = 33$
अत: ${T_1} = {S_1} = a = 7,\;{T_2} = {S_2} – {S_1} = 18 – 7 = 11$,
${T_3} = {S_3} – {S_2} = 33 – 18 = 15$
अत: श्रेणी $7,\,11,\;15,\,……..$ है।
अब, $n$ वाँ पद $ = a + (n – 1)d = 7 + (n – 1)4 = 4n + 3$.
वैकल्पिक : जैसा कि हमें ज्ञात है, ${T_n} = {S_n} – {S_{n – 1}}$
$ = (2{n^2} + 5n) – \{ 2\,{(n – 1)^2} + 5\,(n – 1)\} $
$ = 2{n^2} + 5n – 2{n^2} + 4n – 2 – 5n + 5 = 4n + 3$.
Standard 11
Mathematics