જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.
$2$
$-1$
$1$
$-2$
ધારો કે $(1+x)^{99}$ના વિસ્તરણમાં $x$ની અયુગ્મ ઘાતોના સહગુણકોનો સરવાળો $K$ છે. ધારો કે $\left(2+\frac{1}{\sqrt{2}}\right)^{200}$ ના વિસ્તરણમાં મધ્યમ પદ ' $a$' છે. જો $\frac{200_{C_99} K}{a}=\frac{2^\ell m}{n}$ હોય, જ્યાં $m$ અને $n$ અયુગ્મ સંખ્યાઓ હોય, તો ક્રમયુક્ત જોડ $(l, n )=..........$
જો ${(1 + x)^n} = {C_0} + {C_1}x + {C_2}{x^2} + .......... + {C_n}{x^n}$, તો $\frac{{{C_1}}}{{{C_0}}} + \frac{{2{C_2}}}{{{C_1}}} + \frac{{3{C_3}}}{{{C_2}}} + .... + \frac{{n{C_n}}}{{{C_{n - 1}}}} = $
જો $(1 -x + x^2)^n = a_0 + a_1x + a_2x^2 + ....... + a_{2n}x^{2n}$,હોય તો $a_0 + a_2 + a_4 +........+ a_{2n}$ ની કિમત મેળવો
જો ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ અને ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, તો $\frac{{{t_n}}}{{{S_n}}}$ = . . .
જો $\left(1-3 x+10 x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $\mathrm{A}$ વડે દર્શાવાય તથા $\left(1+x^2\right)^{\mathrm{n}}$ ના વિસ્તરણમાં તમામ સહગુણકોના સરવાળાને $B$ વડે દર્શાવાય, તો :