જો ${({\alpha ^2}{x^2} - 2\alpha {\rm{ }}x + 1)^{51}}$ ના સહગુણકનો સરવાળો શૂન્ય હોય તો $\alpha $ મેળવો.
$2$
$-1$
$1$
$-2$
અભિવ્યક્તિ $(5+x)^{500}+x(5+x)^{499}+x^{2}(5+x)^{498}+\ldots . x^{500}$ $x>0$ માં $x ^{101}$ નો સહુગુણક ......... છે.
$^n{C_0} - \frac{1}{2}{\,^n}{C_1} + \frac{1}{3}{\,^n}{C_2} - ...... + {( - 1)^n}\frac{{^n{C_n}}}{{n + 1}} = $
$(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ નાં વિસ્તરણમાં $x^{256}$ નો સહગુણક મેળવો.
$(x - 1)^2(x - 2)^3(x - 3)^4(x - 4)^5 .... (x - 10)^{11}$ ના વિસ્તરણમાં $x^{64}$ નો સહગુણક મેળવો
જો $(\mathrm{x}+3)^{\mathrm{n}-1}+(\mathrm{x}+3)^{\mathrm{n}-2}(\mathrm{x}+2)+ $ $ (\mathrm{x}+3)^{\mathrm{n}-3}(\mathrm{x}+2)^2+\ldots . .+(\mathrm{x}+2)^{\mathrm{n}-1}$ માં $x^r$ નો સહગુણક $\alpha_{\mathrm{r}}$ છે. જો $\sum_{\mathrm{r}-0}^{\mathrm{n}} \alpha_{\mathrm{r}}=\beta^{\mathrm{n}}-\gamma^{\mathrm{n}}, \beta, \gamma \in \mathrm{N}$, તો $\beta^2+\gamma^2=$..................