In a class of $60$ students, $30$ opted for $NCC$ , $32$ opted for $NSS$ and $24$ opted for both $NCC$ and $NSS$. If one of these students is selected at random, find the probability that The student has opted neither $NCC$ nor $NSS$.
Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
$P ($ not $A$ and not $B)$
$= P(A ^{\prime}$ and $B ^{\prime})$
$= P \left( A^{\prime} \cap B ^{\prime}\right)$
$= P ( A \cup B )^{\prime}$ $[( A^{\prime} \cap B )=( A \cup B )^{\prime}$ by De Morgan's law $)]$
$=1- P ( A \cup B )$
$=1- P ( A$ or $B )$
$=1-\frac{19}{30}$
$=\frac{11}{30}$
Thus, the probability that the selected students has neither opted for $NCC$ nor $NSS$ is $\frac{11}{30}$
Two students Anil and Ashima appeared in an examination. The probability that Anil will qualify the examination is $0.05$ and that Ashima will qualify the examination is $0.10 .$ The probability that both will qualify the examination is $0.02 .$ Find the probability that Atleast one of them will not qualify the examination.
Check whether the following probabilities $P(A)$ and $P(B)$ are consistently defined $P ( A )=0.5$, $ P ( B )=0.4$, $P ( A \cap B )=0.8$
Three athlete $A, B$ and $C$ participate in a race competetion. The probability of winning $A$ and $B$ is twice of winning $C$. Then the probability that the race win by $A$ or $B$, is
In a class of $125$ students $70$ passed in Mathematics, $55$ in Statistics and $30$ in both. The probability that a student selected at random from the class has passed in only one subject is
Let $S$ be a set containing n elements and we select $2$ subsets $A$ and $B$ of $S$ at random then the probability that $A \cup B = S$ and $A \cap B = \phi $ is