એક ધોરણના $60$ વિદ્યાર્થીઓમાંથી $NCC$ ને $30, NSS$ ને $32$ અને બંનેને $24$ વિદ્યાર્થીઓએ પસંદ કર્યા છે. જો આ બધામાંથી એક વિદ્યાર્થી યાદેચ્છિક રીતે પસંદ કરવામાં આવે, તો આપેલ ઘટનાઓની સંભાવના શોધો.વિદ્યાર્થીએ $NCC$ અને $NSS$ માંથી એક પણ પસંદ કર્યા નથી.
Let $A$ be the event in which the selected student has opted for $NCC$ and $B$ be the event in which the selected student has opted for $NSS$.
Total number of students $=60$
Number of students who have opted for $NCC =30$
$\therefore $ $P(A)=\frac{30}{60}=\frac{1}{2}$
Number of students who have opted for $NSS =32$
$\therefore $ $P(B)=\frac{32}{60}=\frac{8}{15}$
Number of students who have opted for both $NCC$ and $NSS = 24$
$\therefore $ $P ( A$ and $B )=\frac{24}{60}=\frac{2}{5}$
$P ($ not $A$ and not $B)$
$= P(A ^{\prime}$ and $B ^{\prime})$
$= P \left( A^{\prime} \cap B ^{\prime}\right)$
$= P ( A \cup B )^{\prime}$ $[( A^{\prime} \cap B )=( A \cup B )^{\prime}$ by De Morgan's law $)]$
$=1- P ( A \cup B )$
$=1- P ( A$ or $B )$
$=1-\frac{19}{30}$
$=\frac{11}{30}$
Thus, the probability that the selected students has neither opted for $NCC$ nor $NSS$ is $\frac{11}{30}$
ભારતએ વેસ્ટઇંડીઝ અને ઓસ્ટ્રેલીયા દરેક સાથે બે મેચ રમે છે.જો ભારતને મેચમાં $0,1$ અને $2$ પોઇન્ટ મળે તેની સંભાવના $0.45,0.05$ અને $0.50$ છે.દરેક મેચના નિર્ણય સ્વંતત્ર હોય,તો ભારતને ઓછામાં ઓછા $7$ પેાઇન્ટ મળે તેની સંભાવના મેળવો.
કોઇ બે નિરપેક્ષ ઘટનાઓ ${E_1}$ અને ${E_2},$ માટે $P\,\{ ({E_1} \cup {E_2}) \cap ({\bar E_1} \cap {\bar E_2})\} $ એ
ઘટના ${\text{A, B}}$ છે $P(A \cup B)\,\, = \,\,\frac{3}{4},\,P(A \cap B)\,\, = \,\,\frac{1}{4},\,P(A')\,\, = \,\,\frac{2}{3}$ તો ${\text{P (A' }} \cap {\text{ B)}} = ......$
જો $A$ અને $B$ એ બે સ્વત્રંત ઘટનાઓ એવી છે કે જેથી $P(A) > 0.5,\,P(B) > 0.5,\,P(A \cap \bar B) = \frac{3}{{25}},\,P(\bar A \cap B) = \frac{8}{{25}}$ થાય તો $P(A \cap B)$ ની કિમત મેળવો.
એક ઘટના $A$ પોતાનાથી સ્વતંત્ર હોય કે જ્યારે $P (A) = ……$