એક વર્ગમાં $55$ વિર્ધાથી છે.જો ગણિત પંસંદ કરલે વિર્ધાથીની સંખ્યા $23 , 24$ એ ભૈતિક વિજ્ઞાનમાં ,$19$ એ રસાયણ વિજ્ઞાનમાં ,$12$ એ ભૈતિક વિજ્ઞાન અને ગણિત, $9$ એ ગણિત અને રસાયણ વિજ્ઞાન, $7$ એ ભૈતિક વિજ્ઞાન અને રસાયણ વિજ્ઞાન ,અને $4$ વિર્ધાથી બધાજ વિષય પંસંદ કરલે છે,તો માત્ર એકજ વિષય પંસંદ કરેલ કુલ વિર્ધાથીની સંખ્યા મેળવો.
$6$
$9$
$7$
$22$
$60$ વ્યક્તિઓના સર્વેક્ષણમાં, $25$ વ્યક્તિઓ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર વાંચતા, $26$ સમાચારપત્ર $1$ વાંચતા, $9\,\mathrm{ H}$ અને $1$ વાંચતા, $11\,\mathrm{ H}$ અને $\mathrm{T}$ બંને વાંચતા, $8\,\mathrm{ T}$ અને $\mathrm{I}$ વાંચતા તથા $3$ તમામ સમાચારપત્ર વાંચતા માલૂમ પડ્યા. ઓછામાં ઓછું એક સમાચારપત્ર વાંચનાર
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{2}$ ની અસર હોય, પરંતુ રસાયણ $C _{1}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે અનુસાર એક શહેરમાં $63 \%$ લોકો સમાચારપત્ર $A$ વાંચે જ્યારે $76 \%$ લોકો સમાચારપત્ર $B$ વાંચે છે જો $x \%$ લોકો બંને સમાચારપત્ર વાંચે તો $x$ ની કિમત ........... હોઈ શકે
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
એક શહેરમાં $20\%$ લોકો કારમાં મુસાફરી કરે છે , $50\%$ લોકો બસમાં મુસાફરી કરે છે અને $10\%$ લોકો બસ અને કારમાં મુસાફરી કરે છે તો . . . . $\%$ લોકો કાર અથવા બસમાં મુસાફરી કરે છે.