એક વર્ગમાં $30$ વિર્ધાથી છે.જો $12$ એ મિસ્ત્રી કામ , $16$ એ ભૈતિક વિજ્ઞાન , $18$ એ ઇતિહાસ વિષય પસંદ કરે છે.જો $30$ વિર્ધાથી પૈકી દરેકે ઓછામાં ઓછો એક વિષય પસંદ કરે છે અને કોઇપણ વિર્ધાથી ત્રણેય વિષય પસંદ ન કરે તો બે વિષય પસંદ કરેલ વિર્ધાથીની સંખ્યા મેળવો.
$16$
$6$
$8$
$20$
ચામડીની વ્યાધિવાળી $200$ વ્યક્તિઓ છે. $120$ વ્યક્તિઓને રસાયણ $C _{1}$ અને $50$ વ્યક્તિઓને રસાયણ $C _{2}$ ની અસર માલૂમ પડી અને $30$ ને બંને રસાયણો $C _{1}$ અને $C _{2}$ ની અસર માલૂમ પડી. રસાયણ $C _{1}$ ની અસર હોય, પરંતુ રસાયણ $C _{2}$ ની અસર ન હોય તેવી વ્યક્તિઓની સંખ્યા શોધો.
સમતલના તમામ ત્રિકોણના ગણને $\mathrm{U}$ તરીકે લો. જો ઓછામાં ઓછો એક ખૂણો $60^{\circ},$ થી ભિન્ન હોય તેવા ત્રિકોણનો ગણ $\mathrm{A}$ હોય, તો $\mathrm{A} ^{\prime}$ શું થશે ?
કોઈ શહેર માં $25\%$ કુટુંબો પાસે ફોન છે અને $15\%$ કુટુંબો પાસે કાર છે ; $65\%$ કુટુંબો પાસે ફોન કે કાર બે માથી કઈ પણ નથી અને $2,000$ કુટુંબો પાસે કાર અને ફોને બંને છે તો નીચેના ત્રણ વિધાનો જુઓ .
$(A)\,\,\,5\%$ કુટુંબો પાસે કાર અને ફોન બંને છે
$(B)\,\,\,35\%$ કુટુંબો પાસે કાર અથવા ફોન છે.
$(C)$ શહેર માં $\,40,000$ કુટુંબો રહે છે
તો,
એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.
એક સર્વે મુજબ $63\%$ અમેરીકનને ચીઝ અને$76\%$ ને સફરજન પસંદ છે. જો $x\%$ ને ચીઝ અને સફરજન પસંદ હોય તો . . . .