1.Set Theory
easy

એક સર્વેક્ષણમાં $21$ વ્યક્તિ ઉત્પાદન $A$ પસંદ કરે છે, $26$ ઉત્પાદન $B$ પસંદ કરે છે અને $29$ ઉત્પાદન $C$ પસંદ કરે છે. જો $14$ વ્યક્તિઓ ઉત્પાદન $A$ અને $B$ બંને પસંદ કરતી હોય, $12$ વ્યક્તિઓ ઉત્પાદન $C$ અને $A$ પસંદ કરતી હોય, $14$ વ્યક્તિઓ ઉત્પાદન $B $ અને $C$ પસંદ કરતી હોય તથા $8$ વ્યક્તિઓ ત્રણેય ઉત્પાદન પસંદ કરતી હોય, તો માત્ર ઉત્પાદન $C $ પસંદ કરતી વ્યક્તિઓની સંખ્યા શોધો.

A

$11$

B

$11$

C

$11$

D

$11$

Solution

Let $A, B$ and $C$ be the set of people who like product $A,$ product $B$, and product $C$ respectively.

Accordingly, $n(A)=21, n(B)=26, n(C)=29, n(A \cap B)=14, n(C \cap A)=12$

$n(B \cap C)=14, n(A \cap B \cap C)=8$

The Venn diagram for the given problem can be drawn as

It can be seen that number of people who like product $C$ only is $\{29-(4+8+6)\}=11$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.