The Fibonacci sequence is defined by
$1 = {a_1} = {a_2}{\rm{ }}$ and ${a_n} = {a_{n - 1}} + {a_{n - 2}},n\, > \,2$
Find $\frac{a_{n+1}}{a_{n}},$ for $n=1,2,3,4,5$
$1=a_{1}=a_{2}$
$a_{n}=a_{n-1}+a_{n-2}, n\,>\,2$
$\therefore a_{3}=a_{2}+a_{1}=1+1=2$
$a_{4}=a_{3}+a_{2}=2+1=3$
$a_{5}=a_{4}+a_{3}=3+2=5$
$a_{6}=a_{5}+a_{4}=5+3=8$
For $n=1, \frac{a_{n+1}}{a_{n}}=\frac{a_{2}}{a_{1}}=\frac{1}{1}=1$
For $n=2, \frac{a_{n+1}}{a_{n}}=\frac{a_{3}}{a_{2}}=\frac{2}{1}=2$
For $n=3, \frac{a_{n+1}}{a_{n}}=\frac{a_{4}}{a_{3}}=\frac{3}{2}$
For $n=4, \frac{a_{n+1}}{a_{n}}=\frac{a_{5}}{a_{4}}=\frac{5}{3}$
For $n=5, \frac{a_{n+1}}{a_{n}}=\frac{a_{6}}{a_{5}}=\frac{8}{5}$
If $3^{2 \sin 2 \alpha-1},14$ and $3^{4-2 \sin 2 \alpha}$ are the first three terms of an $A.P.$ for some $\alpha$, then the sixth term of this $A.P.$ is
If the sum of the first $n$ terms of the series $\sqrt 3 + \sqrt {75} + \sqrt {243} + \sqrt {507} + ......$ is $435\sqrt 3 $ , then $n$ equals
The $A.M.$ of a $50$ set of numbers is $38$. If two numbers of the set, namely $55$ and $45$ are discarded, the $A.M.$ of the remaining set of numbers is
The solution of ${\log _{\sqrt 3 }}x + {\log _{\sqrt[4]{3}}}x + {\log _{\sqrt[6]{3}}}x + ......... + {\log _{\sqrt[{16}]{3}}}x = 36$ is
The $20^{\text {th }}$ term from the end of the progression $20,19 \frac{1}{4}, 18 \frac{1}{2}, 17 \frac{3}{4}, \ldots .,-129 \frac{1}{4}$ is :-