એક પરીક્ષામાં $12$ પ્રશ્નો ધરાવતું પ્રશ્નપત્ર બે ભાગમાં વહેંચાયેલું છે. ભાગ $\mathrm{I}$ માં $5$ પ્રશ્નો અને ભાગ $\mathrm{II}$ માં $7$ પ્રશ્નો આવેલા છે. દરેક ભાગમાંથી ઓછામાં ઓછા $3$ પ્રશ્નો પસંદ કરીને વિદ્યાર્થીએ કુલ $8$ પ્રશ્નોના જવાબનો પ્રયત્ન કરવો જરૂરી છે. વિદ્યાર્થી કુલ કેટલા પ્રકારે પ્રશ્નો પસંદ કરી શકશે ?
It is given that the question paper consists of $12$ questions divided into two parts - Part $I$ and Part $II$, containing $5$ and $7$ questions, respectively.
A student has to attempt $8$ questions, selecting at least $3$ from each part. This can be done as follows.
$(a)$ $3$ questions from part $I$ and $5$ questions from part $II$
$(b)$ $4$ questions from part $I$ and $4$ questions from part $II$
$(c)$ $5$ questions from part $I$ and $3$ questions from part $II$
$3$ questions from part $I$ and $5$ questions from part $II$ can be selected in $^{5} C _{3} \times^{7} C _{5}$ ways.
$4$ questions from part $I$ and $4$ questions from part $II$ can be selected in $^{5} C _{4} \times^{7} C _{4}$. Ways.
$5$ questions from part $I$ and $3 $ questions from part $II$ can be selected in $^{5} C_{5} \times^{7} C_{3}$ ways.
Thus, required number of ways of selecting questions
$=^{5} C_{3} \times^{7} C_{5}+^{5} C_{4} \times^{7} C_{4}+^{5} C_{5} \times^{7} C_{3}$
$=\frac{5 !}{2 ! 3 !} \times \frac{7 !}{2 ! 5 !}+\frac{5 !}{4 ! 1 !} \times \frac{7 !}{4 ! 3 !}+\frac{5 !}{5 ! 0 !} \times \frac{7 !}{3 ! 4 !}$
$=210+175+35=420$
જો વિર્ધાથી $(2n + 1)$ બુકમાંથી વધુમાં વધુ $n$ બુક પસંદ કરી શકે છે.જો તે બુકની કુલ પસંદગી $63$ કરે છે,તો$n$ ની કિંમત મેળવો.
$^{20}C_1 + 3 ^{20}C_2 + 3 ^{20}C_3 + ^{20}C_4$ ની કિમત મેળવો
સમીકરણ $x+y+z=21$, જ્યાં $x \geq 1, y \geq 3, z \geq 4$, ના પૂર્ણાંક ઉકેલોની સંખ્યા $..........$ છે.
'$MAYANK$' શબ્દમાં રહેલા બધા અક્ષરોમાંથી ચાર અક્ષરોનો શબ્દો કેટલા બને કે જેમાં બંને $A$ આવે પરંતુ સાથે ન આવે
જો $\left( {_3^n} \right) + \left( {_4^n} \right) > \left( {_{\,\,\,3}^{n + 1}} \right)$ હોય, તો....