भारत, वेस्टइंडीज व आस्ट्रेलिया प्रत्येक से $2$ मैच खेलता है। किसी भी मैच में भारत के अंक $0, 1, 2$ अर्जित करने की प्रायिकतायें क्रमश: $0.45, 0.05$ व $0.50$ हैं। यह मानकर कि परिणाम स्वतन्त्र हैं भारत के कम से कम $7$ अंक अर्जित करने की प्रायिकता है
$0.875$
$0.0875$
$0.0625$
$0.0250$
एक छात्रावास में $60 \%$ विद्यार्थी हींदी का, $40 \%$ अंग्रेज़ी का और $20 \%$ दोनों अखबार पढ़ते हैं। एक छात्रा को यादृच्छ्या चुना जाता है।
प्रायिकता ज्ञात कीजिए कि वह न तो हींदी और न ही अंग्रेज़ी का अखबार पढती है।
$A$ और $B$ ऐसी घटनाएँ दी गई हैं जहाँ $P(A)=\frac{1}{2}, P(A \cup B)=\frac{3}{5}$ तथा $P ( B )=p$
$\bar{p}$ का मान ज्ञात कीजिए यदि घटनाएँ स्वतंत्र हैं।
यदि $A , B , C$ किसी यादृच्च्छक प्रयोग के संगत तीन घटनाएँ हों तो सिद्ध कीजिए कि
$P ( A \cup B \cup C )= P ( A )+ P ( B )+ P ( C )- P ( A \cap B )- P ( A \cap C )$
$-P(B \cap C)+P(A \cap B \cap C)$
यदि $P(A) = 0.25,\,\,P(B) = 0.50$ तथा $P(A \cap B) = 0.14,$ तब $P(A \cap \bar B) =$
एक प्रश्न को तीन विद्यार्थियों के द्वारा हल करने की प्रायिकता क्रमश: $\frac{1}{2},\,\,\frac{1}{4},\,\,\frac{1}{6}$ है, तब प्रश्न हल हो जायेगा, इस बात की प्रायिकता होगी