माना $p , q$ तथा $r ,( p \neq q , r \neq 0)$, वास्तविक संख्याएँ ऐसी हैं कि समीकरण $\frac{1}{x+ p }+\frac{1}{x+ q }=\frac{1}{ r }$ के मूल बराबर तथा विपरीत चिन्हों के हैं, तो इन मूलों के वर्गों का योगफल बराबर है
${p^2} + {q^2} + {r^2}$
${p^2} + {q^2}$
$2({p^2} + {q^2})$
$\frac{{{p^2} + {q^2}}}{2}$
यदि समीकरण ${x^3} - 3x + 2 = 0$ के दो मूल बराबर हों तो मूल होंगे
समीकरण $x^5\left(x^3-x^2-x+1\right)+x\left(3 x^3-4 x^2-2 x+4\right)-1$ $=0$ के भिन्न वास्तविक मूलों की संख्या है $.........$
यदि $p$ तथा $q$ दो वास्तविक संख्याऐं इस प्रकार है, कि $p + q =3$ तथा $p ^4+ q ^4=369$ है, तो $\left(\frac{1}{ p }+\frac{1}{ q }\right)^{-2}$ का मान होगा-
मान $S=\left\{x: x \in \mathbb{R} \text { एवं }(\sqrt{3}+\sqrt{2})^{x^2-4}+(\sqrt{3}-\sqrt{2})^{x^2-4}=10 \text { हैं }\right\}$ है। तब $\mathrm{n}(\mathrm{S})$ बराबर है-
मान लें कि $x, y, z$ धनात्मक संख्याएँ इस प्रकार हैं कि $HCF (x, y, z)=1$ तथा $x^2+y^2=2 z^2$. तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $4,{ }^x$ को विभाजित करता है या $4, y$ को विभाजित करता है।
$II$. $3,{ }^{x+y}$ को विभाजित करता है या $3, x-y$ को विभाजित करता है।
$III$. $5,2\left(x^2-y^2\right)$ को विभाजित करता है।