माना $p , q$ तथा $r ,( p \neq q , r \neq 0)$, वास्तविक संख्याएँ ऐसी हैं कि समीकरण $\frac{1}{x+ p }+\frac{1}{x+ q }=\frac{1}{ r }$ के मूल बराबर तथा विपरीत चिन्हों के हैं, तो इन मूलों के वर्गों का योगफल बराबर है
${p^2} + {q^2} + {r^2}$
${p^2} + {q^2}$
$2({p^2} + {q^2})$
$\frac{{{p^2} + {q^2}}}{2}$
समीकरण $( x +1)^{2}+| x -5|=\frac{27}{4}$ के वास्तविक मूलों की संख्या है ............ |
यदि $\alpha , \beta , \gamma $ समीकरण ${x^3} + a{x^2} + bx + c = 0$ के मूल हों, तो ${\alpha ^{ - 1}} + {\beta ^{ - 1}} + {\gamma ^{ - 1}} = $
समीकरण $x^2+y^2=a^2+b^2+c^2$, यहाँ $x, y, a, b, c$ सभी अभाज्य संख्याएँ हैं, के कितने हल हैं?
माना $a$ के धन पूर्णांक मानों, जिन के लिए $\frac{a x^2+2(a+1) x+9 a+4}{x^2-8 x+32} < 0, \forall x \in \mathbb{R}$ है, का समुच्चय $\mathrm{S}$ है। तो $\mathrm{S}$ में अवयवों की संख्या है।
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$