Let $A, B$ and $C$ be sets such that $\phi \ne A \cap B \subseteq C$. Then which of the following statements is not true ?
If $\left( {A - C} \right) \subseteq B$ then $A \subseteq B$
If $\left( {A - B} \right) \subseteq C$ then $A \subseteq C$
$\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$
$B \cap C \ne \phi $
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $
$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $
If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find
$A \cup B \cup C$
If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff
Find the union of each of the following pairs of sets :
$A = \{ x:x$ is a natural number and multiple of $3\} $
$B = \{ x:x$ is a natural number less than $6\} $
If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $