Let $A, B$ and $C$ be sets such that $\phi  \ne A \cap B \subseteq C$. Then which of the following statements is not true ?

  • [JEE MAIN 2019]
  • A

    If $\left( {A - C} \right) \subseteq B$ then $A \subseteq B$

  • B

    If $\left( {A - B} \right) \subseteq C$ then $A \subseteq C$

  • C

    $\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$

  • D

    $B \cap C \ne \phi $

Similar Questions

Find the union of each of the following pairs of sets :

$A = \{ x:x$ is a natural number and $1\, < \,x\, \le \,6\} $

$B = \{ x:x$ is a natural number and $6\, < \,x\, < \,10\} $

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$A \cup B \cup C$

If $A$ and $B$ are two sets, then $A \cup B = A \cap B$ iff

Find the union of each of the following pairs of sets :

$A = \{ x:x$ is a natural number and multiple of $3\} $

$B = \{ x:x$ is a natural number less than $6\} $

If ${N_a} = \{ an:n \in N\} ,$ then ${N_3} \cap {N_4} = $