1.Set Theory
hard

Let $A, B$ and $C$ be sets such that $\phi  \ne A \cap B \subseteq C$. Then which of the following statements is not true ?

A

If $\left( {A - C} \right) \subseteq B$ then $A \subseteq B$

B

If $\left( {A - B} \right) \subseteq C$ then $A \subseteq C$

C

$\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$

D

$B \cap C \ne \phi $

(JEE MAIN-2019)

Solution

For $A\, = \,C,\,A – C\, = \,\phi $

$ \Rightarrow \phi \, \subseteq \,B$

But $A\, \subseteq \,B$

$ \Rightarrow \,$ option $A$ is NOT true

Let $x\, \in \,\,(C\,x\, \in \,(C\, \cup \,A)\,\, \cap (C\, \cup \,B)\,)$

$ \Rightarrow \,x\,(C\, \cup \,A)$ and $x\, \in \,\,(C\, \cup \,B)$

$ \Rightarrow \,(x\, \in \,C$ or $x\, \in \,A)$ and  $(x\, \in \,C$ or $x\, \in \,B)$

$ \Rightarrow \,(x\, \in \,C$ or $x\, \in \,\,(A\, \cap \,B)$

$ \Rightarrow \,(x\, \in \,C$   or  $x\, \in \,C$  (as $A\, \cup \,B \subseteq \,C\,$ )

$ \Rightarrow \,x\, \in \,C$

$ \Rightarrow (C\, \cup \,A)\,\, \cap (C\, \cup \,B)\, \subseteq \,C\,\,\,(1)$

Now $x\, \in \,C\, \Rightarrow \,x\, \in \,(C\, \cup \,A)$ and $x\, \in \,\,(C\, \cup \,B\,)$

$ \Rightarrow x\, \in (C\, \cup \,A)\,\, \cap (C\, \cup \,B)$

$ \Rightarrow C\, \subseteq \,(C\, \cup \,A)\,\, \cap (C\, \cup \,B)\, \subseteq \,C\,\,\,(2)$

$ \Rightarrow $ from $(1)$ and $(2)$

$C\, = \,(C\, \cup \,A)\,\, \cap (C\, \cup \,B)$

$ \Rightarrow $ option $B$ is true

Let $x\, \in \,A$ and $x\, \notin \,B$

$\Rightarrow \,x\, \in \,(A – B)$

$ \Rightarrow \,x\, \in \,C$ (as $A – B \subseteq \,C$ )

Let $x\, \in \,A$ and $x\, \in \,B$

$ \Rightarrow \,x\, \in \,(A \cap B)$

$ \Rightarrow \,x\, \in \,C$ (as $A \cap B \subseteq \,C$ )

Hence $x\, \in \,A\,\, \Rightarrow \,x\, \in \,C$

$ \Rightarrow A\, \subseteq \,C$

$ \Rightarrow $ option $C$ is true

As $C \supseteq \,(A \cap B)$

$ \Rightarrow B \cap C \supseteq \,(A \cap B)$

As $A \cap B \ne \phi $

$ \Rightarrow B \cap C \ne \phi $

Hence the correct answer is option $(A)$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.