Let $A, B$ and $C$ be sets such that $\phi  \ne A \cap B \subseteq C$. Then which of the following statements is not true ?

  • [JEE MAIN 2019]
  • A

    If $\left( {A - C} \right) \subseteq B$ then $A \subseteq B$

  • B

    If $\left( {A - B} \right) \subseteq C$ then $A \subseteq C$

  • C

    $\left( {C \cup A} \right) \cap \left( {C \cup B} \right) = C$

  • D

    $B \cap C \ne \phi $

Similar Questions

If $A, B, C$ are three sets, then $A \cap (B \cup C)$ is equal to

If $A=\{1,2,3,4\}, B=\{3,4,5,6\}, C=\{5,6,7,8\}$ and $D=\{7,8,9,10\} ;$ find

$A \cup B$

State whether each of the following statement is true or false. Justify you answer.

$\{a, e, i, o, u\}$ and $\{a, b, c, d\}$ are disjoint sets.

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $A \cap D$

 

If $A = \{ x:x$ is a natural number $\} ,B = \{ x:x$ is an even natural number $\} $ $C = \{ x:x$ is an odd natural number $\} $ and $D = \{ x:x$ is a prime number $\} ,$ find $B \cap C$