1.Relation and Function
medium

વિધેય $f: X \rightarrow Y$ એ વ્યસ્તસંપન્ન છે. સાબિત કરો કે $f^{-1}$ નું પ્રતિવિધેય $f$ છે, એટલે કે $\left(f^{-1}\right)^{-1}=f$

Option A
Option B
Option C
Option D

Solution

Let $f : X \rightarrow Y$ be an invertible function.

Then, there exists a function $g : Y \rightarrow X$ such that $gof = I_X$ and $fog = I_Y$

Here, $f^{-1}=g$

Now,

$gof = I_X$ and $fog = I _{ Y }$

$\Rightarrow f ^{-1}$ of $= I_X$ and $fof -1= I_Y$

Hence, $f^{-1}: Y \rightarrow X$ is invertible and $f$ is the inverse of $f^{-1}$ i.e., $\left(f^{-1}\right)^{-1}=f$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.