$V =\{a, e, i, o, u\}$ અને $B =\{a, i, k, u\}$ છે. $V -B$ અને $B -V$ શોધો.
We have, $V - B =\{e, o\},$ since the elements $e, o$ belong to $V$ but not to $B$ and $B - V =\{k\},$ since the element $k$ belongs to $B$ but not to $V$
We note that $V - B \neq B$ - $V$. Using the setbuilder notation, we can rewrite the definition of difference as
$A - B = \{ x:x \in A$ and $x \notin B\} $
The difference of two sets $A$ and $B$ can be represented by Venn diagram as shown in (Fig)
The shaded portion represents the difference of the two sets $A$ and $B$
જો $A = \{ x:x$ એ પ્રાકૃતિક સંખ્યા છે $\} ,B = \{ x:x$ એ યુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ $C = \{ x:x$ એ અયુગ્મ પ્રાકૃતિક સંખ્યા છે $\} $ અને $D = \{ x:x$ એ અવિભાજ્ય સંખ્યા છે, $\} $ તો મેળવો : $B \cap D$
જો બે અલગ ગણો $A$ અને $B$ હોય તો $n(A \cup B)$ =
કોઈપણ ગણ $\mathrm{A}$ અને $\mathrm{B}$ માટે સાબિત કરો કે, $A=(A \cap B) \cup(A-B)$ અને $A \cup(B-A)=(A \cup B).$
આકૃતિમાં ર્દશાવેલ છાયાંકિત ભાગ . . . . . વડે દર્શાવાય છે.
$A$ અને $B$ ગણો છે. કોઈ ગણ $X$ માટે જો $A \cap X=B \cap X=\phi$ અને $A \cup X=B \cup X$ તો સાબિત કરો કે $A = B$
( સૂચનઃ $A = A \cap (A \cup X),B = B \cap (B \cup X)$ અને વિભાજનના નિયમનો ઉપયોગ કરો. )