8. Sequences and Series
hard

Let $a_{1}, a_{2} \ldots, a_{n}$ be a given $A.P.$ whose common difference is an integer and $S _{ n }= a _{1}+ a _{2}+\ldots+ a _{ n }$ If $a_{1}=1, a_{n}=300$ and $15 \leq n \leq 50,$ then the ordered pair $\left( S _{ n -4}, a _{ n -4}\right)$ is equal to

A

$(2480,249)$

B

$(2490,249)$

C

$(2490,248)$

D

$(2480,248)$

(JEE MAIN-2020)

Solution

$\quad a_{n}=a_{1}+(n-1) d$

$\Rightarrow 300=1+(n-1) d$

$\Rightarrow \quad(n-1) d=299=13 \times 23$

since, $n \in[15,50]$

$\therefore n=24$ and $d=13$

$a_{n-4}=a_{20}=1+19 \times 13=248$

$\Rightarrow a_{n-4}=248$

$S_{n-4}=\frac{20}{2}\{1+248\}=2490$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.