5. Continuity and Differentiation
hard

ધારોકે $f$ એ $R$ પર વ્યાખ્યાયિત કોઈ વિધેય છે અને તે, શરત $|f(x)-f(y)| \leq\left|(x-y)^{2}\right|, \forall \,(x, y) \in R$ નું સમાધાન કરે છે. જો $f(0) = 1$ તો

A

$f(x)$ એ $R$ માં કોઈપણ મૂલ્ય ધારણ કરે છે.

B

$f(x)< 0, \forall \,x \in R$

C

$f( x )=0, \forall \, x \in R$

D

$f( x )>0, \forall \, x \in R$

(JEE MAIN-2021)

Solution

$\left|\frac{f(x)-f(y)}{(x-y)}\right| \leq|(x-y)|$

$x-y=h$ let $\Rightarrow x=y+h$

$\lim _{x \rightarrow 0}\left|\frac{f(y+h)-f(y)}{h}\right| \leq 0$

$\Rightarrow\left|f^{\prime}( y )\right| \leq 0 \Rightarrow f^{\prime}( y )=0$

$\Rightarrow f( y )= k ($ constant $)$

and $f(0)=1$ given

So, $f(y)=1 \Rightarrow f(x)=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.