Let $L$ be a common tangent line to the curves $4 x^{2}+9 y^{2}=36$ and $(2 x)^{2}+(2 y)^{2}=31$. Then the square of the slope of the line $L$ is ..... .

  • [JEE MAIN 2021]
  • A

    $3$

  • B

    $6$

  • C

    $5$

  • D

    $4$

Similar Questions

In an ellipse, the distance between its foci is $6$ and minor axis is $8.$ Then its eccentricity is :

Let the ellipse $E : x ^2+9 y ^2=9$ intersect the positive $x$ - and $y$-axes at the points $A$ and $B$ respectively Let the major axis of $E$ be a diameter of the circle $C$. Let the line passing through $A$ and $B$ meet the circle $C$ at the point $P$. If the area of the triangle which vertices $A, P$ and the origin $O$ is $\frac{m}{n}$, where $m$ and $n$ are coprime, then $m - n$ is equal to

  • [JEE MAIN 2023]

Eccentricity of the conic $16{x^2} + 7{y^2} = 112$ is

Let the line $y=m x$ and the ellipse $2 x^{2}+y^{2}=1$ intersect at a ponit $\mathrm{P}$ in the first quadrant. If the normal to this ellipse at $P$ meets the co-ordinate axes at $\left(-\frac{1}{3 \sqrt{2}}, 0\right)$ and $(0, \beta),$ then $\beta$ is equal to

  • [JEE MAIN 2020]

An ellipse passes through the point $(-3, 1)$ and its eccentricity is $\sqrt {\frac{2}{5}} $. The equation of the ellipse is