माना एक समान्तर श्रेढ़ी के प्रथम $n$ पदों का योगफल $S _{ n }$ है। यदि $S _{3 n }=3 S _{2 n }$ है, तो $\frac{ S _{4 n }}{ S _{2 n }}$ बराबर है

  • [JEE MAIN 2021]
  • A

    $4$

  • B

    $6$

  • C

    $8$

  • D

    $2$

Similar Questions

तीन समांतर श्रेणियों

$3,7,11,15, \ldots \ldots . . . ., 399$,

$2,5,8,11, \ldots \ldots \ldots \ldots . ., 359$ तथा

$2,7,12,17, \ldots \ldots . ., 197$,

के उभ्यनिष्ठ पदों का योग है ____________I

  • [JEE MAIN 2023]

यदि $\tan \left(\frac{\pi}{9}\right), x , \tan \left(\frac{7\pi}{18}\right)$ एक समांतर श्रेढ़ी में हैं तथा $\tan \left(\frac{\pi}{9}\right), y , \tan \left(\frac{5 \pi}{18}\right)$ भी एक समांतर श्रेढ़ी में हैं. तो $| x -2 y |$ बराबर है

  • [JEE MAIN 2021]

माना $\frac{1}{x_{1}}, \frac{1}{x_{2}}, \ldots, \frac{1}{x_{ n }}(i=1,2, \ldots, n$ के लिए $x_{i} \neq 0$ है) समांतर श्रेढ़ी में ऐसे हैं कि $x_{1}=4$ तथा $x_{21}=20$ है। यदि $n$ का न्यूनतम धनपूर्णांक मान जिसके लिए $x_{ n } >50$ है, तो $\sum_{i=1}^{ n }\left(\frac{1}{x_{i}}\right)$ बराबर है

  • [JEE MAIN 2018]

मान लें कि $a_n$, एक अंकगणितीय श्रेढ़ी $(arithmetic\,progression)$ है, जहाँ $n \geq 1$ है और इस श्रेढ़ी का पहला पद $2$ और सार्व अंतर $(common\,difference)$ $4$ है। मान लें कि $M_n$ पहले $n$ पदों का औसत है, तब योग $\sum \limits_{n=1}^{10} M_n$ क्या होगा ?

  • [KVPY 2019]

यदि ${a_1},\,{a_2},....,{a_{n + 1}}$ समांतर श्रेणी में हों, तो  $\frac{1}{{{a_1}{a_2}}} + \frac{1}{{{a_2}{a_3}}} + ..... + \frac{1}{{{a_n}{a_{n + 1}}}}$ का मान होगा