माना $E$ एक दीर्घवत्त है जिसके अक्ष, निर्देशांक अक्षों के समांतर हैं। इसका केन्द्र $(3,-4)$ पर, एक नाभि $(4,-4)$ पर तथा एक शीर्ष $(5,-4)$ पर हैं। यदि $mx - y =4, m >0$ दीर्घवत्त $E$ की एक स्पर्श रेखा है, तो $5 m ^{2}$ का मान बराबर है ......... |

  • [JEE MAIN 2021]
  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

अंतराल $0<\theta<\frac{\pi}{2}$ में दीर्घवृत $\frac{x^2}{9}+\frac{y^2}{4}=1$ के चार बिन्दुओं $(\pm 3 \cos \theta, \pm 2 \sin \theta)$ पर चार स्पर्शज्याएँ खींची गयी है। यदि $A(\theta)$ इन स्पर्शज्याओं द्वारा बनाए गए चतुर्भुज को इंगित करता है, तब $A(\theta)$ का न्यूनतम मान निम्न होगा:

  • [KVPY 2018]

उस दीर्घवृत्त का समीकरण जिसकी उत्केन्द्रता $\frac{1}{2}$ और शीर्ष $(4, 0)$ तथा $(10, 0)$ हैं, होगा   

दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए

$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$

यदि दीर्घवत्त, $x ^{2}+4 y ^{2}=4$ की एक स्पर्शरेखा, इसके दीर्घ अक्ष के छोरों पर खींची गई स्पर्श रेखाओं को बिन्दुओं $B$ तथा $C$ पर मिलती है, तो $BC$ को व्यास मान कर खींचा गया वत्त निम्न में से किस बिन्दु से होकर जाता है ?

  • [JEE MAIN 2021]

किसी $\theta \in\left(0, \frac{\pi}{2}\right)$ के लिए, यदि अतिपरवलय $x^{2}-y^{2} \sec ^{2} \theta=$ 10 को उत्केन्द्रता, दीर्घवृत्त, $x ^{2} \sec ^{2} \theta+ y ^{2}=5$ की उत्केन्द्रता का $\sqrt{5}$ गुणा है, तो दीर्घवृत्त की नाभिलम्ब जीवा की लम्बाई बराबर है -

  • [JEE MAIN 2020]