ધારો કે $\lambda x-2 y=\mu$ એ અતિવલય $a^{2} x^{2}-y^{2}=b^{2}$ નો સ્પર્શક છે. તો $\left(\frac{\lambda}{a}\right)^{2}-\left(\frac{\mu}{b}\right)^{2}$ = ......
$-2$
$-4$
$2$
$4$
અતિવલય $\frac{{{x^2}}}{{{{\cos }^2}\alpha }}\,\, - \,\,\frac{{{y^2}}}{{{{\sin }^2}\,\,\alpha }}\, = \,\,1\,$ માટે જ્યારે $\,\alpha $ બદલાતો હોય ત્યારે નીચેના માંથી કયું પદ અચળ રહે.
અતિવલય $ \,\frac{{{{\text{x}}^{\text{2}}}}}{{{a^2}}}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\, - 1\,\,$ ની નાભિલંબાઈ:
જો $\left( {{\text{k,}}\,\,{\text{2}}} \right)$ માંથી પસાર થતા અતિવલય $\frac{{{x^2}}}{9}\,\, - \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\, $ ની ઉત્કેન્દ્રતા $\frac{{\sqrt {13} }}{3}\,$ હોય,તો ${k^2}\,$ નું મૂલ્ય:
અતિવલય $H : x^{2}-y^{2}=1$ અને ઉપવલય $E : \frac{x^{2}}{ a ^{2}}+\frac{y^{2}}{ b ^{2}}=1, a > b >0$, માટે ધારોકે
$(1)$ $E$ ની ઉત્કેન્દ્રતા એ $H$ ની ઉત્કેન્દ્રતાની વ્યસ્ત છે, અને
$(2)$ રેખા $y=\sqrt{\frac{5}{2}} x+ K$ એ $E$ અને $H$ નો સામાન્ય સ્પર્શક છે.
તો $4\left(a^{2}+b^{2}\right)=$ ...........
જો અતિવલયનો નાભિલંબ 8 અને ઉત્કેન્દ્રતા $\frac{3}{{\sqrt 5 }}$હોય, તો અતિવલયનું સમીકરણ.....