माना वृत्त $C$, बिन्दु $A (2,-1)$ तथा $B (3,4)$ से गुजरता है। रेखाखण्ड $AB$, वृत्त $C$ का व्यास नहीं है। यदि वृत्त $C$ की त्रिज्या $r$ तथा इसका केन्द्र, वृत्त $( x -5)^2+( y -1)^2=\frac{13}{2}$ पर स्थित है, तो $r ^2$ बराबर है :
$32$
$\frac{65}{2}$
$\frac{61}{2}$
$30$
वृत्त ${x^2} + {y^2} = 9$ एवं ${x^2} + {y^2} - 12y + 27 = 0$ एक दूसरे को स्पर्श करते हैं। इनकी उभयनिष्ठ स्पषी का समीकरण है
दो वत्तों जिनके समीकरण
$x ^{2}+ y ^{2}-10 x -10 y +41=0$ तथा $x ^{2}+ y ^{2}-22 x -10 y +137=0$ हैं, के लिए सही कथन चुनिए
यदि चर रेखा $3 x +4 y =\alpha$, दो वत्तों $( x -1)^{2}+( y -1)^{2}=1$ तथा $( x -9)^{2}+( y -1)^{2}=4$ के बीच इस प्रकार स्थित है कि यह किसी मी वत्त से जीवा नहीं बनाती, तो $\alpha$ के समी पूर्णाक मानों का योग है ..........
उस वृत्त का केन्द्र, जो कि दिये गये वृत्तों ${x^2} + {y^2} + 2x + 17y + 4 = 0,$ ${x^2} + {y^2} + 7x + 6y + 11 = 0$ तथा ${x^2} + {y^2} - x + 22y + 3 = 0$ को लम्बवत् काटता है, है
बिन्दु $(0, 0)$ तथा $(1, 0)$ से होकर जाने वाले तथा वृत्त ${x^2} + {y^2} = 9$ को स्पर्श करने वाले वृत्त का केन्द्र है