माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है
$2222$
$2223$
$2224$
$2225$
धनपूर्णांक के $5-$ टुपल्स $(tuples)$ $(a, b, c, d, e)$, इस प्रकार हैं कि
$I$. $a, b, c, d, e$ उत्तल पंचकोण $(Convex\,pentagon)$ के डिग्री में कोणों के माप हैं ।
$II$. $a \leq b \leq c \leq d \leq e$
$III$. $a, b, c, d, e$ अंकगणितीय श्रेढ़ी मे हैं ।
ऐसे कितने $5-$ टुपल्स सभव है ?
यदि किसी समांतर श्रेणी का $9$ वाँ पद शून्य हो, तो उसके $29$ वें तथा $19$ वें पदों का अनुपात है
यदि ${a^2},\,{b^2},\,{c^2}$ समान्तर श्रेणी में हैं, तो $\frac{a}{{b + c}},\,\frac{b}{{c + a}},\,\frac{c}{{a + b}}$ होंगे
यदि $\tan \,n\theta = \tan m\theta $ हो, तो $\theta $ के विभिन्न मान होंगे
यदि $\frac{a}{b},\frac{b}{c},\frac{c}{a}$ हरात्मक श्रेणी में हों, तो