माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।
$753$
$752$
$754$
$751$
दो समांतर श्रेढ़ियों के $n$ पदों के योगफल का अनुपात $5 n+4: 9 n+6 .$ हो, तो उनके $18$ वे पदों का अनुपात ज्ञात कीजिए।
तीन घनात्मक पूर्णाकों $\mathrm{p}, \mathrm{q}, \mathrm{r}$, के लिए $\mathrm{x}^{\mathrm{pq}}=\mathrm{y}^{\mathrm{qr}}=\mathrm{z}^{\mathrm{p}^2 \mathrm{r}}, \mathrm{r}=\mathrm{pq}+1$ हैं तथा $3,3 \log _{\mathrm{y}} \mathrm{x}$, $3 \log _z y, 7 \log _x z$ एक $A.P.$ में है, जिसका सार्व अंतर $\frac{1}{2}$ है। तो $\mathrm{r}-\mathrm{p}-\mathrm{q}$ बराबर है
माना $a_1, a_2, \ldots ., a_n, \ldots$ वास्तविक संख्याओं की एक समांतर श्रेढ़ी है। यदि इस श्रेढ़ी के प्रथम पाँच पदों के योग का, प्रथम नौ पदों के योग से अनुपात $5: 17$ है तथा $110 < a_{15} < 120$ है, तो इस श्रेढ़ी के प्रथम दस पदों का योग है -
यदि $4$ पदों वाली एक समान्तर श्रेणी के प्रथम व अन्तिम पदों का योग $8$ एवं शेष दो बीच वाली संख्याओं का गुणनफल $15$ हो, तो श्रेणी की सबसे बड़ी संख्या होगी
माना श्रेणी ${a_1},{a_2},{a_3},.............{a_{2n}}$ एक समान्तर श्रेणी है, तब $a_1^2 - a_2^2 + a_3^3 - ......... + a_{2n - 1}^2 - a_{2n}^2 = $