माना $a_1=8, a_2, a_3, \ldots a_n$ एक $A.P.$ हैं। यदि इसके प्रथम चार पदों का योग $50$ है तथा इसके अन्तिम चार पदों का योग $170$ है, तब इसके मध्य दो पदों का गुणनफल _____________हैं।

  • [JEE MAIN 2023]
  • A

    $753$

  • B

    $752$

  • C

    $754$

  • D

    $751$

Similar Questions

यदि एक शून्येतर समान्तर श्रेढ़ी का $19$ वां पद शून्य है, तो इसका ($49$ वाँ) : ($29$ वाँ पद) है 

  • [JEE MAIN 2019]

यदि तीन संख्यायें गुणोत्तर श्रेणी में हैं, तो उनके लघुगुणक (Logarithms) होंगे

यदि ${\log _3}2,\;{\log _3}({2^x} - 5)$व ${\log _3}\left( {{2^x} - \frac{7}{2}} \right)$ समान्तर श्रेणी में हों, तो $x$ के मान होंगे  

  • [IIT 1990]

यदि दो समान्तर श्रेणियाँ के $n$ वें पद क्रमश: $3n + 8$ व $7n + 15$ हों, तो उनके $12$ वें पदों का अनुपात होगा

तीन समान्तर श्रेणियों के $n$ पदों के योगफल${S_1},\;{S_2},\;{S_3}$ हैं जिनके प्रथम पद $1$ और सार्वअन्तर क्रमश: $1, 2, 3$ हैं, तो सत्य सम्बन्ध  होगा