ધારો કે $\alpha_1, \alpha_2, \ldots, \alpha_7$ એ સમીકરણ $x^7+3 x^5-13 x^3-15 x=0$ નાં બીજ છે અને $\left|a_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ તો $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6=......$

  • [JEE MAIN 2023]
  • A

    $9$

  • B

    $8$

  • C

    $7$

  • D

    $6$

Similar Questions

જો $a, b, c, d$ અને $p$ ભિન્ન વાસ્તવિક સંખ્યાઑ છે કે જેથી $(a^2 + b^2 + c^2)\,p^2 -2p\, (ab + bc + cd) + (b^2 + c^2 + d^2)  \le 0$ થાય તો ... 

  • [AIEEE 2012]

સમીકરણ $|x||x+2|-5|x+1|-1=0$ નાં ભિન્ન વાસ્તવિક બીજ ની સંખ્યા ............ છે. 

  • [JEE MAIN 2024]

જો $\alpha ,\beta,\gamma$ એ સમીકરણ $x^3 + 2x -5 = 0$ ના ઉકેલો હોય અને સમીકરણ  $x^3 + bx^2 + cx + d = 0$ ના ઉકેલો $2 \alpha + 1, 2 \beta + 1, 2 \gamma + 1$ હોય તો $|b + c + d|$ ની કિમત મેળવો (જ્યાં $b,c,d$ નો સરવાળો અવિભાજય સંખ્યા છે )

દ્રીઘાત સમીકરણ $(1 + 2m)x^2 -2(1+ 3m)x + 4(1 + m),$ $x\in R,$ હમેંશા ધન રહે તે માટે $m$ ની કેટલી પૂર્ણાંક કિમંતો મળે ?

  • [JEE MAIN 2019]

ધારો કે $\alpha$ અને $\beta$ બે વાસ્તવિક સંખ્યાઓ છે કે જેથી $\alpha+\beta=1$ અને $\alpha \beta=-1 .$ જો કોઈક પૂર્ણાંક $n \geq 1$ માટે ધારો કે $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ અને $p _{ n +1}=29$ હોય, તો $p _{ n }^{2}$ નું મૂલ્ય ....  થાય.

  • [JEE MAIN 2021]