ધારોકે $f: R -\{0,1\} \rightarrow R$ એવુ વિધેય છે કે જેથી $f(x)+f\left(\frac{1}{1-x}\right)=1+x$ થાય . તો $f(2)......$.
$\frac{9}{2}$
$\frac{9}{4}$
$\frac{7}{4}$
$\frac{7}{3}$
જો $f\left( x \right) = {\left( {\frac{3}{5}} \right)^x} + {\left( {\frac{4}{5}} \right)^x} - 1$ , $x \in R$ તો સમીકરણ $f(x) = 0$ ને . . . .
વિધેય $\mathrm{f}(\mathrm{x})=\log _{\sqrt{5}}(3+\cos \left(\frac{3 \pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}+\mathrm{x}\right)+\cos \left(\frac{\pi}{4}-\mathrm{x}\right)$
$-\cos \left(\frac{3 \pi}{4}-\mathrm{x}\right))$ નો વિસ્તાર મેળવો.
જો વિધેય $f(x) = \frac{1}{4}{x^2} + bx + 10$ માટે $f\left( {12 - x} \right) = f\left( x \right)\,\forall \,x\, \in \,R$ , હોય તો $'b'$ નિ કિમત મેળવો.
વિધેય $f\left( x \right) = \frac{1}{{4 - {x^2}}} + \log \,\left( {{x^3} - x} \right)$ નો પ્રદેશ મેળવો.
જો $f(x) = \frac{{\alpha \,x}}{{x + 1}},\;x \ne - 1$. તો, $\alpha $ ની . . . . કિમત માટે $f(f(x)) = x$ થાય.