माना अतिपरवलय $3 \mathrm{x}^2-4 \mathrm{y}^2=36$ पर बिन्दु $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0\right)$, रेखा $3 \mathrm{x}+2 \mathrm{y}=1$ के निकटतम है। तो $\sqrt{2}\left(\mathrm{y}_0-\mathrm{x}_0\right)$ बराबर है:
$-3$
$9$
$-9$
$3$
माना परवलय $y ^{2}=12 x$ तथा अतिप्वल य $8 x ^{2}- y ^{2}=8$. की उभयनिष्ठ स्पर्श रेखाओं का प्र तिच्छेदन बिन्दु $P$ है। यदि $S$ तथा $S ^{\prime}$ अतिपरवलय की नाभियाँ हैं, जहाँ $s$ धनात्मक $x$-अक्ष पर स्थित है, तो $P , SS ^{\prime}$ को निम्न में से किस अनुपात में विभाजित करता है ?
माना $a > 0, b > 0$ है। माना अतिपरवलय $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$ की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई क्रमशः $e$ तथा $\ell$ है। माना इसके संयुग्मी अतिपरवलय की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई क्रमशः $e^{\prime}$ तथा $\ell^{\prime}$ है। यदि $e ^2=\frac{11}{14} \ell$ तथा $\left( e ^{\prime}\right)^2=\frac{11}{8} \ell^{\prime}$ है, तो $77 a +$ $44 b$ का मान है
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
शीर्ष $(0,\pm 3),$ नाभियाँ $(0,±5)$
यदि अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ पर दो स्पर्श रेखायें इस प्रकार खींची जाती हैं कि उनकी प्रवणताओं का गुणनफल ${c^2}$ है, तो वे निम्न वक्र पर प्रतिच्छेद करती हैं
एक अतिपरवलय, $\frac{ x ^{-}}{25}+\frac{ y ^{2}}{16}=1$ की नाभियों से होकर जाता है तथा इसके अनुप्रस्थ और संयुग्मी अक्ष क्रमश: दीर्घवत के दीर्घ और अल्प अक्षों के समरूप हैं। यदि उनकी उत्केन्द्रताओं का गुणनफल एक है, तो अतिपरवलय का समीकरण है