ધારો કે $H _{ n }: \frac{x^2}{1+n}-\frac{y^2}{3+n}=1, n \in N$ છે.ધારો કે $k$ એ $n$ ની એવી લઘુતમ યુગ્મ કિંમત છે કે જેથી $H _{ k }$ ની ઉત્કેન્દ્રતા સંમેય સંખ્યા થાય.જો $H _{ k }$ ના નાભિલંબની લંબાઈ $l$ હોય, તો $21\,l =........$
$305$
$306$
$304$
$303$
એક ઉપવલય $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ એ અતિવલય $H: \frac{x^{2}}{49}-\frac{y^{2}}{64}=-1$ નાં શિરોબિંદુઓમાંથી પસાર થાય છે. ધારોક ઉપવલય $E$ ની પ્રધાન અને ગૌણ અક્ષો, અતિવલય $H$ ની અનુક્રમે મુખ્ય અને અનુબદ્ધ અક્ષો સાથે સંપાતિ છે. ધારો કે $E$ અને $H$ ની ઉત્કેન્દ્રતાઓનો ગુણાકાર $\frac{1}{2}$ છે. જો ઉપવલય $E$ ના નાભિલંબની લંબાઈ $l$ હોય, તો $113 l$ નું મૂલ્ય ............. છે.
$m$ ના ક્યાં મૂલ્ય માટે $y\,\, = \,\,mx\,\, + \;\,6$ એ અતિવલય $\frac{{{{\rm{x}}^{\rm{2}}}}}{{100}}\,\, - \,\,\frac{{{y^2}}}{{49}}\,\, = \,\,1\,$ નો સ્પર્શક હોય ?
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : શિરોબિંદુઓ $(0,\,\pm 5),$ નાભિઓ $(0,\,±8)$
અતિવલયના નાભિકેન્દ્ર આગળ નાભિલંબ કાટખૂણો બનાવે, તો તેની ઉત્કેન્દ્રતા :
આપેલ શરતોનું પાલન કરતાં અતિવલયનું સમીકરણ મેળવો : શિરોબિંદુઓ $(\pm 7,\,0)$, $e=\frac{4}{3}$