माना $\mathrm{H}_{\mathrm{n}}=\frac{\mathrm{x}^2}{1+\mathrm{n}}-\frac{\mathrm{y}^2}{3+\mathrm{n}}=1, \mathrm{n} \in \mathrm{N}$ हैं। माना $\mathrm{k}$, $\mathrm{n}$ का वह न्यूनतम सम मान है जिसके लिए $\mathrm{H}_{\mathrm{k}}$ की उत्केन्द्रता एक परिमेय संख्या है। यदि $\mathrm{H}_k$ की नाभिलंब जीवा की लंबाई $l$ है, तो $21 l$ बराबर __________है।

  • [JEE MAIN 2023]
  • A

    $305$

  • B

    $306$

  • C

    $304$

  • D

    $303$

Similar Questions

रेखा $3x - 4y = 5$ अतिपरवलय ${x^2} - 4{y^2} = 5$ की एक स्पर्श रेखा है तो स्पर्श बिन्दु है  

अतिपरवलय, $16 x ^{2}-9 y ^{2}+32 x +36 y -164=0$ पर किसी बिंदु $P$ तथा इसकी नाभियों से बने त्रिभुज के केन्द्रक का बिन्दुपथ है

  • [JEE MAIN 2021]

अतिपरवलय $\frac{{{x^2}}}{{16}} - \frac{{{y^2}}}{{25}} = 1$ की उत्केन्द्रता है

यदि किसी अतिपरवलय के शीर्ष $(4, 0)$ तथा $(-4, 0)$ और नाभियाँ  $(6, 0)$ तथा $(-6, 0)$ हों, तो उत्केन्द्रता होगी

प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए

शीर्ष $(0,\pm 5),$ नाभियाँ $(0,±8)$