ધારોકે બિંદુ $P (4,1)$ માંથી અતિવલય $H: \frac{y^2}{25}-\frac{x^2}{16}=1$ પર દોરેલ સ્પર્શકોના ઢાળ $\left| m _1\right|$ અને $\left| m _2\right|$ છે.જો $Q$ એવું બિંદ્દુ હોય કે જેમાથી $H$ પર દોરેલ સ્પર્શકોના ઢાળ $\left| m _1\right|$ અને $\left| m _2\right|$ હોય અને તેનો $x$-અક્ષ પર ધન અંતઃખંડો $\alpha$ અને $\beta$ બનાવે,તો $\frac{(P Q)^2}{\alpha \beta}=........$
$6$
$5$
$8$
$4$
આપેલ અતિવલય માટે નાભિઓ, શિરોબિંદુઓ, ઉત્કેન્દ્રતા અને નાભિલંબની લંબાઈ મેળવો: $5 y^{2}-9 x^{2}=36$
ધારોકે $(3, \alpha)$ બિંદુ પરનો, પરવલય $y ^2=12 x$ નો સ્પર્શક એ રેખા $2 x +2 y =3$ ને લંબ છે. તો અતિવલય $\alpha^2 x ^2-9 y ^2=9 \alpha^2$ ના બિંદુ $(\alpha-1, \alpha+2)$ પરના અભિલંબથી બિંદુ $(6,-4)$ ના અંતરની વર્ગ $........$ થશે.
જો રેખા $y=m x+c$ એ અતિવલય $\frac{x^{2}}{100}-\frac{y^{2}}{64}=1$ અને વર્તુળ $x^{2}+y^{2}=36$ બંનેનો સામાન્ય સ્પર્શક હોય તો નીચેનામાંથી ક્યુ વિધાન સાચું છે ?
રેખાઓ $\sqrt 3 x\,\, - \,\,y\,\, - \,\,4\sqrt 3 \,\,k\,\, = \,\,0$ અને $\sqrt 3 \,\,kx\,\,+\,yk - \,\,4\sqrt 3 \,\, = \,\,0$ ના છેદ બિંદુનો બિંદુપથ ના ભિન્ન મૂલ્યો માટે શોધો.
કોઈ એક અતિવલય, એ ઉપવલય $\frac{ x ^{2}}{25}+\frac{ y ^{2}}{16}=1$ ની નાભિઓમાંથી પસાર થાય છે અને તેની મુખ્ય અક્ષ અને અનુબદ્ધ અક્ષ અનુક્રમે ઉપવલયની મુખ્ય અક્ષ અને ગૌણ અક્ષ સાથે એકાકાર છે. જો તેમની ઉત્કેન્દ્રતાઓનો ગુણાકાર એક હોય, તો તે અતિવલયનું સમીકરણ ....... થશે.