Let $\left( a + bx + cx ^2\right)^{10}=\sum \limits_{ i =0}^{20} p _{ i } x ^{ i }, a , b , c \in N$. If $p _1=20$ and $p _2=210$, then $2( a + b + c )$ is equal to
$8$
$12$
$15$
$6$
If for positive integers $r> 1, n > 2$, the coefficients of the $(3r)^{th}$ and $(r + 2)^{th}$ powers of $x$ in the expansion of $( 1 + x)^{2n}$ are equal, then $n$ is equal to
In the expansion of ${(1 + x)^5}$, the sum of the coefficient of the terms is
The coefficient of $x^r (0 \le r \le n - 1)$ in the expression :
$(x + 2)^{n-1} + (x + 2)^{n-2}. (x + 1) + (x + 2)^{n-3} . (x + 1)^2; + ...... + (x + 1)^{n-1}$ is :
The value $\sum \limits_{ r =0}^{22}{ }^{22} C _{ r }{ }^{23} C _{ r }$ is $.......$
${C_1} + 2{C_2} + 3{C_3} + 4{C_4} + .... + n{C_n} = $