${z_1}$ एक सम्मिश्र संख्या है जिसके लिये $|{z_1}| = 1$ तथा ${z_2}$कोई अन्य सम्मिश्र संख्या है, तब $\left| {\frac{{{z_1} - {z_2}}}{{1 - {z_1}{{\bar z}_2}}}} \right| = $
$0$
$1$
$-1$
$2$
यदि $x+i y=\frac{a+i b}{a-i b}$ है तो, सिद्ध कीजिए कि $x^{2}+y^{2}=1$
सर्वसमिका $|z - 4|\, < \,|\,z - 2|$निम्न में किस क्षेत्र को निरूपित करती है
यदि $(x-i y)(3+5 i),-6-24 i$ की संयुग्मी है तो वास्तविक संख्याएँ $x$ और $y$ ज्ञात कीजिए।
यदि $z$ तथा $\omega$ दो सम्मिश्र संख्याएँ हैं, जिनके लिए $|z \omega|=1$ तथा $\arg ( z )-\arg (\omega)=\frac{3 \pi}{2}$ है, तो $\arg$ $\left(\frac{1-2 \bar{z} \omega}{1+3 \bar{z} \omega}\right)$ बराबर है : (जहाँ $\arg ( z )$ सम्मिश्र संख्या $z$ के मुख्य कोणांक को दर्शाता है)
यदि $\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$, के लिए $|\mathrm{z}+1|=\alpha \mathrm{z}+\beta(1+\mathrm{i}), \mathrm{i}=\sqrt{-1} $है जहाँ $ \alpha, \beta \in \mathrm{R} \text {, }$ है तो $\alpha+\beta$ बराबर है