8. Sequences and Series
normal

Let for $n =1,2, \ldots \ldots, 50, S _{ a }$ be the sum of the infinite geometric progression whose first term is $n ^{2}$ and whose common ratio is $\frac{1}{(n+1)^{2}}$. Then the value of $\frac{1}{26}+\sum\limits_{n=1}^{50}\left(S_{n}+\frac{2}{n+1}-n-1\right)$ is equal to

A

$41600$

B

$47651$

C

$41651$

D

$41671$

(JEE MAIN-2022)

Solution

$S_{n}=\frac{n^{2}}{1-\frac{1}{(n+1)^{2}}}=\frac{n(n+1)^{2}}{(n+2)}$

$S_{n}=\frac{n\left(n^{2}+2 n+1\right)}{(n+2)}$

$S_{n}=\frac{n[n(n+2)+1]}{(n+2)}$

$S_{n}=n\left[n+\frac{1}{n+2}\right]$

$S_{n}=n^{2}+\frac{n+2-2}{(n+2)}$

$S_{n}=n^{2}+1-\frac{2}{(n+2)}$

Now $\frac{1}{26}+\sum \limits_{n=1}^{50}\left[\left(n^{2}-n\right)-2\left(\frac{1}{n+2}-\frac{1}{n+1}\right)\right]$

$=\frac{1}{26}+\left[\frac{50 \times 51 \times 101}{6}-\frac{50 \times 51}{2}-2\left(\frac{1}{52}-\frac{1}{2}\right)\right]$

$=41651$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.