8. Sequences and Series
normal

माना $n =1,2, \ldots ., 50$ के लिए, अनन्त गुणोत्तर श्रेणी का योगफल $S _{ n }$ है जिसका प्रथम पद $n ^2$ तथा जिसका सार्व अनुपात $\frac{1}{(n+1)^2}$ है। तब $\frac{1}{26}+\sum_{ n =1}^{50}\left( S _{ n }+\frac{2}{ n +1}- n -1\right)$ का मान है

A

$41600$

B

$47651$

C

$41651$

D

$41671$

(JEE MAIN-2022)

Solution

$S_{n}=\frac{n^{2}}{1-\frac{1}{(n+1)^{2}}}=\frac{n(n+1)^{2}}{(n+2)}$

$S_{n}=\frac{n\left(n^{2}+2 n+1\right)}{(n+2)}$

$S_{n}=\frac{n[n(n+2)+1]}{(n+2)}$

$S_{n}=n\left[n+\frac{1}{n+2}\right]$

$S_{n}=n^{2}+\frac{n+2-2}{(n+2)}$

$S_{n}=n^{2}+1-\frac{2}{(n+2)}$

Now $\frac{1}{26}+\sum \limits_{n=1}^{50}\left[\left(n^{2}-n\right)-2\left(\frac{1}{n+2}-\frac{1}{n+1}\right)\right]$

$=\frac{1}{26}+\left[\frac{50 \times 51 \times 101}{6}-\frac{50 \times 51}{2}-2\left(\frac{1}{52}-\frac{1}{2}\right)\right]$

$=41651$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.