श्रेणी $2 \times 4 + 4 \times 6 + 6 \times 8 + .......$ का $20$ वाँ पद होगा

  • A

    $1600$

  • B

    $1680$

  • C

    $420$

  • D

    $840$

Similar Questions

अनुक्रम $2,4,8,16,32$ तथा $128,32,8,2, \frac{1}{2}$ के संगत पदों के गुणनफल से बने अनुक्रम का
योगफल ज्ञात कीजिए।

गुणोत्तर श्रेणी का योगफल निर्दिष्ट पदों तक ज्ञात कीजिए।

$\sqrt{7}, \sqrt{21}, 3 \sqrt{7}, \ldots n$ पदों तक

माना $\left\{a_{\mathrm{k}}\right\}$ तथा $\left\{\mathrm{b}_{\mathrm{k}}\right\}, \mathrm{k} \in \mathbb{N}$, दो G.P. है, जिनके सार्व अनुपात क्रमशः $r_1$ तथा $r_2$ है और $a_1=b_1=4$, $\mathrm{r}_1<\mathrm{r}_2$ है। माना $\mathrm{c}_{\mathrm{k}}=\mathrm{a}_{\mathrm{k}}+\mathrm{b}_{\mathrm{k}}, \mathrm{k} \in \mathbb{N}$ है। यदि $\mathrm{c}_2=5$ तथा $\mathrm{c}_3=\frac{13}{4}$ है तो $\sum_{\mathrm{k}=1}^{\infty} \mathrm{c}_{\mathrm{k}}-\left(12 \mathrm{a}_6+8 \mathrm{~b}_4\right)$ बराबर है________. 

  • [JEE MAIN 2023]

एक अनुक्रम $ < {a_n} > \;$ के लिये ${a_1} = 2$ तथा $\frac{{{a_{n + 1}}}}{{{a_n}}} = \frac{1}{3}$, तब $\sum\limits_{r = 1}^{20} {{a_r}} $ है

दिखाइए कि अनुक्रम $a, a r, a r^{2}, \ldots a r^{n-1}$ तथा $A , AR , AR ^{2}, \ldots AR ^{n-1}$ के संगत पदों के गुणनफल से बना अनुक्रम गुणोत्तर श्रेणी होती है तथा सार्व अनुपात ज्ञात कीजिए।