Let the centre of a circle, passing through the point $(0,0),(1,0)$ and touching the circle $x^2+y^2=9$, be $(h, k)$. Then for all possible values of the coordinates of the centre $(h, k), 4\left(h^2+k^2\right)$ is equal to .............
$1$
$2$
$6$
$9$
Let $C_i \equiv x^2 + y^2 = i^2 (i = 1,2,3)$ are three circles. If there are $4i$ points on circumference of circle $C_i$. If no three of all the points on three circles are collinear then number of triangles which can be formed using these points whose circumcentre does not lie on origin, is-
A circle $\mathrm{C}$ touches the line $\mathrm{x}=2 \mathrm{y}$ at the point $(2,1)$ and intersects the circle $C_{1}: x^{2}+y^{2}+2 y-5=0$ at two points $\mathrm{P}$ and $\mathrm{Q}$ such that $\mathrm{PQ}$ is a diameter of $\mathrm{C}_{1}$. Then the diameter of $\mathrm{C}$ is :
The equation of the circle which passing through the point $(2a,\,0)$ and whose radical axis is $x = \frac{a}{2}$ with respect to the circle ${x^2} + {y^2} = {a^2},$ will be
The equation of the circle having the lines ${x^2} + 2xy + 3x + 6y = 0$ as its normals and having size just sufficient to contain the circle $x(x - 4) + y(y - 3) = 0$is
The number of common tangents to the circles ${x^2} + {y^2} - 4x - 6y - 12 = 0$ and ${x^2} + {y^2} + 6x + 18y + 26 = 0$ is