પ્રથમ ત્રણ પદો લખો : $a_{n}=\frac{n-3}{4}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Here $a_{n}=\frac{n-3}{4} .$ Thus, $a_{1}=\frac{1-3}{4}=-\frac{1}{2}, a_{2}=-\frac{1}{4}, a_{3}=0$

Hence, the first three terms are $-\frac{1}{2},-\frac{1}{4}$ and $0 .$

Similar Questions

જો $a, b, c$ એ ત્રણ સમગુણોત્તર શ્રેણીના ત્રણ ભિન્ન પદો હોય તથા સમીકરણ $ax^2 + 2bc + c = 0$ અને $dx^2 + 2ex + f = 0$ ને સામાન્ય ઉકેલો હોય તો નીચેનાના માંથી ક્યું વિધાન સાચું છે ?

  • [JEE MAIN 2019]

એક માણસ $4500$ ચલણી નોટોની ગણતરી કરે છે. ધારો કે $a_n $ નોટોની સંખ્યા દર્શાવે છે. તે $n$ મિનીટમાં ગણતરી કરે છે. જો $a_1$ = $a_2$ = … = $a_1$0 $= 150$ અને $a_{10}, a_{11},.....$  સમાંતર શ્રેણીના સામાન્ય તફાવત $-2$  સાથે હોય, તો તેના દ્વારા બધી નોટોની ગણતરી કરવા માટે લાગતો સમય કેટલા .............. મિનિટ હશે ?

આપેલ સમાંતર શ્રેણીમાં બધા પદો ધન પૂર્ણાંક સંખ્યા છે તથા પહેલા નવ પદોનો સરવાળો $200$ કરતાં વધારે અને $220$ કરતાં ઓછો છે. જો શ્રેણીનું   બીજું  પદ $12$ હોય તો ચોથું પદ મેળવો.

  • [JEE MAIN 2014]

ગણ $\{\mathrm{n} \in\{1,2, \ldots \ldots ., 100\} \mid$  $n$ અને $2040$ નો ગુ.સા.અ  $1$ થાય  $\,\}$ ના બધાજ ઘટકોનો સરવાળો મેળવો.

  • [JEE MAIN 2021]

ત્રણ સંખ્યાઓ સમગુણોત્તર શ્રેણીમાં છે, તો તેના લઘુગુણક.......