माना एक दीर्घवृत्त $\frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की उत्केन्द्रता, अतिपरवलय $2 x^2-2 y^2=1$ की उत्केन्द्रता की व्युत्क्रम (reciprocal) है। यदि दीर्घवृत्त, अतिपरवलय को लंबवत काटता है, तो दीर्घवृत्त की नाभिलंब जीवा की लंबाई का वर्ग है__________

  • [JEE MAIN 2023]
  • A

    $4$

  • B

    $6$

  • C

    $2$

  • D

    $8$

Similar Questions

अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ का केन्द्र $C$ है। इस अतिपरवलय के किसी भी बिन्दु $P$ पर खींची गयी स्पर्श रेखा, सरल रेखाओं $bx - ay = 0$ व $bx + ay = 0$ को क्रमश: $Q$ व $R$ बिन्दुओं पर मिलती है, तो $CQ\;.\;CR = $

अतिपरवलय की उत्केन्द्रता कभी भी निम्न के बराबर नहीं हो सकती

परवलय ${y^2} = 8x$ व अतिपरवलय $3{x^2} - {y^2} = 3$ की उभयनिष्ठ स्पर्श रेखाओं का समीकरण है  

नाभियाँ $(0,±3)$ और शीर्षों $\left(0, \pm \frac{\sqrt{11}}{2}\right)$ वाले अतिपरवलय का समीकरण ज्ञात
कीजिए।

माना कि $H: \frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, जहाँ $a>b>0, x y$ - समतल (plane) में एक ऐसा अतिपरवलय (hyperbola) है जिसका संयुग्मी अक्ष (conjugate axis) $L M$ उसके एक शीर्ष (vertex) $N$ पर $60^{\circ}$ का कोण (angle) अंतरित (subtend) करता है। माना कि त्रिभुज (triangle) $L M N$ का क्षेत्रफल (area) $4 \sqrt{3}$ है।

सूची - $I$ सूची - $II$
$P$ $H$ के संयुग्मी अक्ष की लम्बाई है $1$ $8$
$Q$ $H$ की उत्केन्द्रता (eccentricity) है $2$ ${\frac{4}{\sqrt{3}}}$
$R$ $H$ की नाभियों (foci) के बीच की दूरी है $3$ ${\frac{2}{\sqrt{3}}}$
$S$ $H$ के नाभिलम्ब जीवा (latus rectum) की लम्बाई है $4$ $4$

दिए हुए विकल्पों मे से सही विकल्प है:

  • [IIT 2018]