સમીરકણ $\sin x + \cos x = 2$ ના બીજની સંખ્યા . . . . છે.
$1$
$2$
અનંત
એકપણ ઉકેલ શક્ય નથી
સમીકરણ $(s)$ of the equation ${\cos ^2}2x + {\cos ^2}\frac{{5x}}{4} = \cos 2x\,{\cos ^2}5x$ ના $\left[ {0,\frac{\pi }{3}} \right]$ માં કેટલા ઉકેલો મળે?
$\theta $ ની વ્યાપટ કિમત મેળવો કે જેથી બંને સમીકરણો $cot^3\theta + 3 \sqrt 3 $ = $0$ & $cosec^5\theta + 32$ = $0$ નું સમાધાન થાય. $(n \in I)$
આપેલ સમીકરણના મુખ્ય અને વ્યાપક ઉકેલ શોધો : $\tan x=\sqrt{3}$.
જો $\left| {\,\begin{array}{*{20}{c}}{\cos (A + B)}&{ - \sin (A + B)}&{\cos 2B}\\{\sin A}&{\cos A}&{\sin B}\\{ - \cos A}&{\sin A}&{\cos B}\end{array}\,} \right| = 0$ તો $B =$
જો $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2} $ એ $ 4 \cos \theta+5 \sin \theta=1$ ના ઉકેલ હોય, તો $\tan \alpha$ નું મૂલ્ચ .............. છે.