कथन $I$ - दो बल $(\overrightarrow{ P }+\overrightarrow{ Q })$ तथा $(\overrightarrow{ P }-\overrightarrow{ Q })$ जहाँ $\overrightarrow{ P } \perp \overrightarrow{ Q }$, जब एक दूसरे से $\theta_{1}$ कोण पर लगते हैं, तो परिणामी का परिमाण $\sqrt{3\left( P ^{2}+ Q ^{2}\right)}$ होता है तथा जब $\theta_{2}$ कोण पर लगते है, तो परिणामी का परिमाण $\sqrt{2\left( P ^{2}+ Q ^{2}\right)}$ होता है। यह तभी सम्भव होता है जब $\theta_{1}<\theta_{2}$ है।
कथन $II$ - उपयुर्क्त दी गयी दशा में $\theta_{1}=60^{\circ}$ तथा $\theta_{2}=90^{\circ}$ उपर्युक्त कथनों के अवलोकन में, नीचे दिए गये विकल्पों से उपयुक्त उत्तर चुनिए।

  • [JEE MAIN 2021]
  • A
    कथन$-I$ असत्य है परन्तु कथन$-II$ सही हैं।
  • B
    दोनों कथन$-I$ तथा कथन$-I$I सत्य हैं।
  • C
    कथन$-I$ सत्य है परन्तु कथन$-II$ असत्य हैं।
  • D
    दोनों कथन$-I$ तथा कथन$-II$ असत्य हैं।

Similar Questions

दो बलों $\overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला बल $\overrightarrow{ R }$ ऐसा है कि $|\overrightarrow{ R }|=|\overrightarrow{ P }|$. यदि $2 \overrightarrow{ P }$ और $\overrightarrow{ Q }$ को जोड़कर मिलने वाला परिणामी बल $\overrightarrow{ Q }$ से $\theta$ कोण (डिग्री में) बनाता हो तो $\theta$ का मान होगा |

  • [JEE MAIN 2020]

$10\, N$ के पाँच एकसमान बल एक बिन्दु पर आरोपित किये गये हैं तथा यह सभी एक ही तल में हैं। यदि उनके मध्य कोण बराबर हों तो इनका परिणामी ............... $\mathrm{N}$ होगा

माना $\mathop A\limits^ \to = 2\hat i + \hat j,\,B = 3\hat j - \hat k$ तथा $\mathop C\limits^ \to = 6\hat i - 2\hat k$ तो $\mathop A\limits^ \to - 2\mathop B\limits^ \to + 3\mathop C\limits^ \to $ का मान होगा

दो बलों ${F_1}$ व ${F_2}$ का सदिश योग ${F_3}$ के तुल्य है, इसका चित्रण निम्न में किस चित्र में किया गया है

चित्र में दिखाये गये घन की भुजा  ' $a$ ' के फलक $ABOD$ के केन्द्र से फलक $BEFO$ के केन्द्र तक जाने वाला सदिश होगा ?

  • [JEE MAIN 2019]