$0$ નો કોણાંક મેળવો.

  • A

    $0$

  • B

    $\pi /2$

  • C

    $\pi $

  • D

    એકપણ નહીં.

Similar Questions

જો $Arg(z)$ એ સંકર સંખ્યા $z$ નો મુખ્ય કોણાક દર્શાવે તો $Arg\left( { - i{e^{i\frac{\pi }{9}}}.{z^2}} \right) + 2Arg\left( {2i{e^{-i\frac{\pi }{{18}}}}.\overline z } \right)$ ની કિમત મેળવો 

$|2z - 1| + |3z - 2|$ ની ન્યૂનતમ કિમત મેળવો.

ધારો કે $\alpha=8-14 i, A=\left\{z \in C : \frac{\alpha z-\bar{\alpha} \bar{z}}{z^2-(\bar{z})^2-112 i}=1\right\}$ અને $B=[z \in C :|z+3 i|=4]$.તો $\sum_{z \in A \cap B}(\operatorname{Re} z-\operatorname{Im} z)=............$

  • [JEE MAIN 2023]

જો $z$ એ સંકર સંખ્યા હોય તો સમીકરણ ${z^4} + z + 2 = 0$ ના બીજ શક્ય ન થવા માટે. . . .

જો $z$ માટે $\left| z \right| = 1$ અને $z = 1 - \vec z$ તો.

વિધાન $1$ : $z$ એ વાસ્તવિક સંખ્યા છે.

વિધાન $2$ : $z$ નો મુખ્ય કોણાંક $\frac{\pi }{3}$ છે. 

  • [JEE MAIN 2013]