The Boolean expression $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow((\mathrm{r} \wedge \mathrm{q}) \wedge \mathrm{p})$ is equivalent to :

  • [JEE MAIN 2021]
  • A

    $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow(\mathrm{r} \wedge \mathrm{p})$

  • B

    $(\mathrm{q} \wedge \mathrm{r}) \Rightarrow(\mathrm{p} \wedge \mathrm{q})$

  • C

    $(\mathrm{p} \wedge \mathrm{q}) \Rightarrow(\mathrm{r} \vee \mathrm{q})$

  • D

    $(\mathrm{p} \wedge \mathrm{r}) \Rightarrow(\mathrm{p} \wedge \mathrm{q})$

Similar Questions

Let $p, q, r$ denote arbitrary statements. Then the logically equivalent of the statement $p\Rightarrow (q\vee r)$ is

  • [JEE MAIN 2014]

The Boolean expression $\sim\left( {p\; \vee q} \right) \vee \left( {\sim p \wedge q} \right)$ is equivalent ot :

  • [JEE MAIN 2018]

Let $p , q , r$ be three statements such that the truth value of $( p \wedge q ) \rightarrow(\sim q \vee r )$ is $F$. Then the truth values of $p , q , r$ are respectively

  • [JEE MAIN 2020]

Dual of $(x \vee y) \wedge (x \vee 1) = x \vee (x \wedge y) \vee y$ is

Contrapositive of the statement “If two numbers are not equal, then their squares are not equals” is

  • [JEE MAIN 2019]