अतिपरवलय ${x^2} - {y^2} = 25$ की उत्केन्द्रता है
$\sqrt 2 $
$1/\sqrt 2 $
$2$
$1 + \sqrt 2 $
वक्र ${x^2} - {y^2} = {a^2}$ की उत्केन्द्रता होगी
अतिपरवलय $16{x^2} - {y^2} + 64x + 4y + 44 = 0$ के अनुप्रस्थ अक्ष तथा संयुग्मी अक्ष के समीकरण हैं
प्रतिबंधों को संतुष्ट करते हुए अतिपरवलय का समीकरण ज्ञात कीजिए
नाभियाँ $(0, \pm \sqrt{10})$, हैं तथा $(2,3)$ से होकर जाता है।
माना $\mathrm{A}, \mathrm{x}$-अक्ष पर एक बिन्दु है। $\mathrm{A}$ से वक्रों $x^2+y^2=8$ व $y^2=16 x$ पर उभयनिष्ठ स्पर्श रेखाएं खींची जाती हैं। यदि इनमें से एक स्पर्श रेखा दोनों वक्रों को $\mathrm{Q}$ तथा $\mathrm{R}$ पर स्पर्श करती है, तब $(\mathrm{QR})^2$ बराबर है :
अतिपरवलय $25{x^2} - 16{y^2} = 400$ की उस जीवा का समीकरण क्या होगा, जिसका मध्य बिन्दु $(5, 3)$ है