दीर्घवृत्त $x ^2+2 y ^2=4$ पर रिथत बिन्दुओं तथा बिन्दु $(4,3)$ को मिलाने वाले रेखाखण्ड के मध्य बिन्दु का बिन्दुपथ दीर्घवृत्त है जिसकी उत्केन्द्रता है :
$\frac{\sqrt{3}}{2}$
$\frac{1}{2 \sqrt{2}}$
$\frac{1}{\sqrt{2}}$
$\frac{1}{2}$
दीर्घवृत्त में नाभियों और शीर्षों के निर्देशांक, दीर्घ और लघु अक्ष की लंबाइयाँ, उत्केंद्रता तथा नाभिलंब जीवा की लंबाई ज्ञात कीजिए
$\frac{x^{2}}{36}+\frac{y^{2}}{16}=1$
दीर्घवृत्त $3 x ^{2}+5 y ^{2}=32$ के बिन्दु $P (2,2)$ पर खींची गई स्पर्श रेखा तथा अभिलंब, $x$-अक्ष को क्रमशः $Q$ तथा $R$ पर काटते है। तो त्रिभुज $PQR$ का क्षेत्रफल (वर्ग इकाइयों में) हैं
माना दीर्घवृत्त $\frac{x^2}{9}+\frac{y^2}{4}=1$ पर एक बिंदु $P$ है। माना $P$ से होकर जाने वाली तथा $y$-अक्ष के समांतर रेखा $x^2+y^2=9$ के बिंदु $Q$ पर मिलती है तथा $P$ और $Q$, $X$ अंक्ष के एक ही ओर है | तो $P$ के दिर्ध्वृत पर चलने पर $P Q$ पर एक बिंदु $R$ जिसके लिए $\mathrm{PR}: \mathrm{RQ}=4: 3$ हैं, के बिंदुपथ की उत्केन्द्रता है:
दीर्घवृत्त $25{x^2} + 9{y^2} - 150x - 90y + 225 = 0$ की उत्केन्द्रता $e = $
यदि दीर्घवृत्त की नाभियाँ $( \pm \sqrt 5 ,\,0)$ तथा उत्केन्द्रता $\frac{{\sqrt 5 }}{3}$ है, तब दीर्घवृत्त का समीकरण है