एक समद्विबाहु त्रिभुज की दो बराबर भुजाओं के समीकरण $7x - y + 3 = 0$ तथा $x + y - 3 = 0$ हैं और तीसरी भुजा बिन्दु $(1, -10)$ से गुजरती है। तीसरी भुजा का समीकरण है
$y = \sqrt 3 x + 9$ परन्तु $y = -\sqrt 3 x + 9$
$3x + y + 7 = 0$ परन्तु $3x + y - 7 = 0$ नहीं
$3x + y + 7 = 0$ या $x - 3y - 31 = 0$
न तो $3x + y + 7$ और न ही $x - 3y - 31 = 0$
एक बिन्दु इस प्रकार गति करता है, कि इस बिन्दु तथा बिन्दुओं $(1, 5)$ तथा $ (3, -7)$ से बने त्रिभुज का क्षेत्रफल $21$ वर्ग इकाई है, तब बिन्दु का बिन्दुपथ होगा
एक बिन्दु, बिन्दु $(1, 2)$ से गति प्रारंभ करता है तथा $x$ तथा $y$ - अक्षों पर इसके प्रक्षेप क्रमश: $3$ मी/से तथा $2$ मी/से के वेग से गति करते हैं, तब इस बिन्दु का बिन्दुपथ है
उन रेखाओं के समीकरण, जिन पर मूलबिन्दु से डाला गया लम्ब $x$-अक्ष से ${30^o}$ का कोण बनाता है एवं जो अक्षों के साथ $\frac{{50}}{{\sqrt 3 }}$ वर्ग इकाई क्षेत्रफल का त्रिभुज बनाता है,
$L _1$ और $L _2$ द्वारा परिभाषित रेखाओं
$L _1: x \sqrt{2}+ y -1=0 \text { और } L _2: x \sqrt{2}- y +1=0$
पर विचार कीजिए। किसी नियत अचर (fixed constant) $\lambda$ के लिए, मान लीजिए कि $C$ एक बिन्दु $P$ का ऐसा बिन्दुपथ (locus) है कि $P$ से $L _1$ की दूरी और $P$ से $L _2$ की दूरी का गुणनफल $\lambda^2$ है। रेखा $y =2 x +1, C$ को दो बिन्दुओं $R$ और $S$ पर मिलती है, जहाँ $R$ और $S$ के बीच की दूरी $\sqrt{270}$ है।
मान लीजिए कि RS का लंब समद्विभाजक (perpendicular bisector), $C$ को दो भिन्न बिन्दुओं R' और $S ^{\prime}$ पर मिलता है। मान लीजिए कि $R ^{\prime}$ और $S ^{\prime}$ के बीच की दूरी के वर्ग (square of the distance) का मान $D$ है।
($1$) $\lambda^2$ का मान. . . . . है।
($2$) $D$ का मान. . . . . है।
एक रेखा $L$, बिन्दुओं $(1, 1)$ व $(2, 0)$ से होकर जाती है एवं एक अन्य रेखा $L'$, बिन्दु $\left( {\frac{1}{2},0} \right)$ से होकर जाती है एवं $L$ पर लम्ब है, तो रेखाओं $L$ व $L'$ तथा $y$-अक्ष द्वारा निर्मित त्रिभुज का क्षेत्रफल है