यदि ${(1 + ax)^n}$, $(n \ne 0)$ के विस्तार में प्रथम तीन पद क्रमश: $1, 6x$ व $16x^2$ हैं, तो $a$ व $n$ के मान क्रमश: होंगे
$2$ और $9$
$3$ और $2$
$2/3$ और $9$
$3/2$ और $6$
${\left( {{x^2} - \frac{1}{x}} \right)^9}$ के प्रसार में $x$ से स्वतंत्र पद होगा
${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{32}}$ का गुणांक होगा
$\left(\frac{4 \mathrm{x}}{5}+\frac{5}{2 \mathrm{x}^2}\right)^9$ के प्रसार में $\mathrm{x}^{-6}$ का गुणांक है______________.
यदि $(3+a x)^{9}$ के प्रसार में $x^{2}$ तथा $x^{3}$ के गुणांक समान हों, तो $a$ का मान ज्ञात कीजिए।
यदि ${\left( {2 + \frac{x}{3}} \right)^n}$ में ${x^7}$ तथा ${x^8}$ के गुणांक बराबर हैं, तब $n$ है