यदि ${(1 + ax)^n}$, $(n \ne 0)$ के विस्तार में प्रथम तीन पद क्रमश: $1, 6x$ व $16x^2$ हैं, तो $a$ व $n$ के मान क्रमश: होंगे

  • A

    $2$ और $9$

  • B

    $3$ और $2$

  • C

    $2/3$ और $9$

  • D

    $3/2$ और $6$

Similar Questions

$(1 + x + 2{x^3})\,{\left( {\frac{3}{2}{x^2} - \frac{1}{{3x}}} \right)^9}$ के विस्तार में $x$  से स्वतंत्र पद का गुणांक है

${\left( {{x^4} - \frac{1}{{{x^3}}}} \right)^{15}}$ के विस्तार में ${x^{39}}$ का गुणांक होगा

$x$ के घटते घात $(decreasing\,powers)$ में $\left(x^{1 / 2}+\frac{1}{2 x^{1 / 4}}\right)^n$ का प्रसार $(expansion)$ लिखिए. मान लें कि पहले तीन पदों के गुणांकों $(coefficients)$ से अंकगणितीय शंढी $(arithmetic \,progression)$ बनती है। तब प्रसार मे $s$ के पूर्णांक घात $(integer\,powers)$ वालें पदों की संख्य है - -

  • [KVPY 2010]

यदि $(1+x)^{ n }$ के द्विपद विस्तार में तीन क्रमिक पदों के गुणांकों में $1: 7: 42$ का अनुपात है, तो इन में से विस्तार में पहला पद है

  • [JEE MAIN 2015]

यदि $\left(\frac{\mathrm{x}^{\frac{5}{2}}}{2}-\frac{4}{\mathrm{x}^{\ell}}\right)^9$ के द्विपद प्रसार में अचर पद $-84$ है तथा $\mathrm{x}^{-3 \ell}$ का गुणांक $2^\alpha \beta$ है, जहाँ $\beta<0$ एक विषम संख्या है, तो $|\alpha \ell-\beta|$ बराबर है______________. 

  • [JEE MAIN 2023]